河南省卢氏实验高中2025届高一下数学期末质量检测模拟试题含解析_第1页
河南省卢氏实验高中2025届高一下数学期末质量检测模拟试题含解析_第2页
河南省卢氏实验高中2025届高一下数学期末质量检测模拟试题含解析_第3页
河南省卢氏实验高中2025届高一下数学期末质量检测模拟试题含解析_第4页
河南省卢氏实验高中2025届高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省卢氏实验高中2025届高一下数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知两座灯塔和与海洋观察站的距离都等于5,灯塔在观察站的北偏东,灯塔在观察站的南偏东,则灯塔与灯塔的距离为()A. B. C. D.2.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.643.《九章算术》中的玉石问题:“今有玉方一寸,重七两;石方一寸,重六两.今有石方三寸,中有玉,并重十一斤(即176两),问玉、石重各几何?”其意思为:“宝玉1立方寸重7两,石料1立方寸重6两,现有宝石和石料混合在一起的一个正方体,棱长是3寸,质量是11斤(即176两),问这个正方体中的宝玉和石料各多少两?”如图所示的程序框图给出了对此题的一个求解算法,运行该程序框图,则输出的分别为()A.90,86 B.98,78 C.94,82 D.102,744.在各项均为正数的等比数列中,公比.若,,,数列的前n项和为,则当取最大值时,n的值为()A.8 B.9 C.8或9 D.175.已知平面向量,,且,则实数的值为()A. B. C. D.6.为数列的前n项和,若,则的值为()A.-7 B.-4 C.-2 D.07.已知直三棱柱的所有顶点都在球0的表面上,,,则=()A.1 B.2 C. D.48.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.9.在△ABC中,角A、B、C所对的边分别为,己知A=60°,,则B=()A.45° B.135° C.45°或135° D.以上都不对10.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.12._____13.函数的单调增区间是_________14.若圆与圆的公共弦长为,则________.15.数列满足,则________.16.已知满足约束条件,则的最大值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为锐角,,.(1)求的值;(2)求的值.18.某校准备从高一年级的两个男生和三个女生中选择2个人去参加一项比赛.(1)若从这5个学生中任选2个人,求这2个人都是女生的概率;(2)若从男生和女生中各选1个人,求这2个人包括,但不包括的概率.19.已知点A(1,2),B(3,1),C(2,2),D(1,m)(1)若向量∥,求实数m的值;(2)若m=3,求向量与的夹角.20.已知,且.(1)求的值;(2)求的值.21.已知函数(1)若,求函数的零点;(2)若在恒成立,求的取值范围;(3)设函数,解不等式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据题意画出ABC的相对位置,再利用正余弦定理计算.【详解】如图所示,,,选B.【点睛】本题考查解三角形画出相对位置是关键,属于基础题.2、D【解析】

根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.3、B【解析】(1);(2);(3);(4),输出分别为98,78。故选B。4、C【解析】∵为等比数列,公比为,且∴∴,则∴∴∴,∴数列是以4为首项,公差为的等差数列∴数列的前项和为令当时,∴当或9时,取最大值.故选C点睛:(1)在解决等差数列、等比数列的运算问题时,有两个处理思路:一是利用基本量将多元问题简化为一元问题;二是利用等差数列、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差数列、等比数列问题的快捷方便的工具;(2)求等差数列的前项和最值的两种方法:①函数法:利用等差数列前项和的函数表达式,通过配方或借助图象求二次函数最值的方法求解;②邻项变号法:当时,满足的项数使得取得最大值为;当时,满足的项数使得取得最小值为.5、B【解析】

先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.6、A【解析】

依次求得的值,进而求得的值.【详解】当时,;当时,,;当时,;故.故选:A.【点睛】本小题主要考查根据递推关系式求数列每一项,属于基础题.7、B【解析】

由题得在底面的投影为的外心,故为的中点,再利用数量积计算得解.【详解】依题意,在底面的投影为的外心,因为,故为的中点,,故选B.【点睛】本题主要考查平面向量的运算,意在考查学生对该知识的理解掌握水平,属于基础题.8、B【解析】

根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为故答案为:B【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.9、A【解析】

利用正弦定理求出的值,再结合,得出,从而可得出的值。【详解】由正弦定理得,,,则,所以,,故选:A。【点睛】本题考查利用正弦定理解三角形,要注意正弦定理所适用的基本情形,同时在求得角时,利用大边对大角定理或两角之和不超过得出合适的答案,考查计算能力,属于中等题。10、D【解析】

根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.12、【解析】

将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.13、,【解析】

令,即可求得结果.【详解】令,解得:,所以单调递增区间是,故填:,【点睛】本题考查了型如:单调区间的求法,属于基础题型.14、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.15、【解析】

根据题意可求得和的等式相加,求得,进而推出,判断出数列是以6为周期的数列,进而根据求出答案。【详解】将以上两式相加得数列是以6为周期的数列,故【点睛】对于递推式的使用,我们可以尝试让取或,又得一个递推式,将两个递推式相加或者相减来找规律,本题是一道中等难度题目。16、57【解析】

作出不等式组所表示的可行域,平移直线,观察直线在轴的截距取最大值时的最优解,再将最优解代入目标函数可得出目标函数的最大值.【详解】作出不等式组所表示的可行域如下图所示:平移直线,当直线经过可行域的顶点时,该直线在轴上的截距取最大值,此时,取最大值,即,故答案为.【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值问题,一般利用平移直线结合在坐标轴上的截距取最值时,找最优解求解,考查数形结合数学思想,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.18、(1);(2).【解析】

(1)写出从5个学生中任选2个人的所有等可能基本事件,计算事件2个人都是女生所含的基本事件个数;(2)写出从男生和女生中各选1个人的所有等可能基本事件,计算事件2个人包括,但不包括所含的基本事件个数.【详解】(1)由题意知,从5个学生中任选2个人,其所有等可能基本事件有:,,,,,,,,,,共10个,选2个人都是女生的事件所包含的基本事件有,,,共3个,则所求事件的概率为.(2)从男生和女生中各选1个人,其所有可能的结果组成的基本事件有,,,,,,共6个,包括,但不包括的事件所包含的基本事件有,,共2个,则所求事件的概率为.【点睛】本题的两问均考查利用古典概型的概率计算公式,求事件发生的概率,求解过程中要求列出所有等可能结果,并指出事件所包含的基本事件个数,最后代入公式计算概率.19、(1)1;(2).【解析】

(1)先求出,的坐标,再根据两向量平行坐标交叉相乘相减等于零求解;(2)先求出,的坐标和模,再求,的数量积,即可求向量与的夹角.【详解】(1)因为A(1,2),B(3,1),C(2,2),D(1,m),所以,,若向量∥,则,即,(2)若m=3,则,,所以,,,所以,故向量与的夹角为.【点睛】本题考查向量平行与夹角的计算.向量平行根据向量共线定理,求向量的夹角要选择合适的公式.20、(1)(2)【解析】

(1)由即可求得;(2)可由的差角公式进行求解【详解】(1)由题可知,,,(2),又由前式可判断,,,故,【点睛】本题考查三角函数的计算,二倍角公式的使用,两角差公式的使用,易错点为忽略具体的角度范围,属于中档题21、(1)1;(2)(3)见解析【解析】

(1)解方程可得零点;(2)恒成立,可分离参数得,这样只要求得在上的最大值即可;(3)注意到的定义域,不等式等价于,这样可根据与0,1的大小关系分类讨论.【详解】(1)当时,令得,,∵,∴函数的零点是1(2)在恒成立,即在恒成立,分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论