福州第三中学2025届高一数学第二学期期末统考模拟试题含解析_第1页
福州第三中学2025届高一数学第二学期期末统考模拟试题含解析_第2页
福州第三中学2025届高一数学第二学期期末统考模拟试题含解析_第3页
福州第三中学2025届高一数学第二学期期末统考模拟试题含解析_第4页
福州第三中学2025届高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福州第三中学2025届高一数学第二学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,复数,若的虚部为1,则()A.2 B.-2 C.1 D.-12.若数列前12项的值各异,且对任意的都成立,则下列数列中可取遍前12项值的数列为()A. B. C. D.3.阅读如图所示的程序框图,当输入时,输出的()A.6 B. C.7 D.4.已知,所在平面内一点P满足,则()A. B. C. D.5.若,是不同的直线,,是不同的平面,则下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则6.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. B.C. D.7.设等差数列的前项的和为,若,,且,则()A. B. C. D.8.在中,内角,,的对边分别为,,,若,且,则的形状为()A.等边三角形 B.等腰直角三角形C.最大角为锐角的等腰三角形 D.最大角为钝角的等腰三角形9.若cosθ>0,且sin2θ<0,则角θ的终边在()A.第一象限B.第二象限C.第三象限D.第四象限10.化简:()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足(),且,,__.12.已知函数的图象如图所示,则不等式的解集为______.13.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.14.已知圆锥的母线长为1,侧面展开图的圆心角为,则该圆锥的体积是______.15.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=___________.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的所有棱长和为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,点是坐标原点,已知点为线段上靠近点的三等分点.求点的坐标:若点在轴上,且直线与直线垂直,求点的坐标.18.已知圆:和点,,,.(1)若点是圆上任意一点,求;(2)过圆上任意一点与点的直线,交圆于另一点,连接,,求证:.19.设函数.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.20.函数.(1)求函数的周期和递增区间;(2)若,求函数的值域.21.设的内角所对的边分别为,且,.(Ⅰ)求的值;(Ⅱ)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,所以,。故选B。2、C【解析】

根据题意可知利用除以12所得的余数分析即可.【详解】由题知若要取遍前12项值的数列,则需要数列的下标能够取得除以12后所有的余数.因为12的因数包括3,4,6,故不能除以12后取所有的余数.如除以12的余数只能取1,4,7,10的循环余数.又5不能整除12,故能够取得除以12后取所有的余数.故选:C【点睛】本题主要考查了数列下标整除与余数的问题,属于中等题型.3、D【解析】

根据程序框图,依次运行程序即可得出输出值.【详解】输入时,,,,,,,输出故选:D【点睛】此题考查程序框图,关键在于读懂框图,根据结构依次运算,求出输出值,尤其注意判断框中的条件.4、D【解析】

由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.5、C【解析】

A中平面,可能垂直也可能平行或斜交,B中平面,可能平行也可能相交,C中成立,D中平面,可能平行也可能相交.【详解】A中若,,,平面,可能垂直也可能平行或斜交;B中若,,,平面,可能平行也可能相交;同理C中若,,则,分别是平面,的法线,必有;D中若,,,平面,可能平行也可能相交.故选C项.【点睛】本题考查空间中直线与平面,平面与平面的位置关系,属于简单题.6、B【解析】试题分析:从甲乙等名学生中随机选出人,基本事件的总数为,甲被选中包含的基本事件的个数,所以甲被选中的概率,故选B.考点:古典概型及其概率的计算.7、C【解析】,,,,,,故选C.8、D【解析】

先由余弦定理,结合题中条件,求出,再由,求出,进而可得出三角形的形状.【详解】因为,所以,,所以.又,所以,则的形状为最大角为钝角的等腰三角形.故选D【点睛】本题主要考查三角形的形状的判定,熟记余弦定理即可,属于常考题型.9、D【解析】试题分析:且,,为第四象限角.故D正确.考点:象限角.10、A【解析】

.故选A.【点睛】考查向量数乘和加法的几何意义,向量加法的运算.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】

根据函数图象以及不等式的等价关系即可.【详解】解:不等式等价为或,

则,或,

故不等式的解集是.

故答案为:.【点睛】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.13、【解析】

设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.14、【解析】

根据题意得,解得,求得圆锥的高,利用体积公式,即可求解.【详解】设圆锥底面的半径为,根据题意得,解得,所以圆锥的高,所以圆锥的体积.【点睛】本题主要考查了圆锥的体积的计算,以及圆锥的侧面展开图的应用,其中解答中根据圆锥的侧面展开图,求得圆锥的底面圆的半径是解答的关键,着重考查了推理与运算能力,属于基础题.15、.【解析】

先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得.,得,即,故选D.【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角.16、【解析】

取半正多面体的截面正八边形,设半正多面体的棱长为,过分别作于,于,可知,,可求出半正多面体的棱长及所有棱长和.【详解】取半正多面体的截面正八边形,由正方体的棱长为1,可知,易知,设半正多面体的棱长为,过分别作于,于,则,,解得,故该半正多面体的所有棱长和为.【点睛】本题考查了空间几何体的结构,考查了空间想象能力与计算求解能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由题意利用线段的定比分点坐标公式,两个向量坐标形式的运算法则,求出点P的坐标.(2)由题意利用两个向量垂直的性质,两个向量坐标形式的运算法则,求出点Q的坐标.【详解】设,因为,所以,又,所以,解得,从而.设,所以,由已知直线与直线垂直,所以则,解得,所以.【点睛】本题主要考查了线段的定比分点坐标公式,两个向量垂直的性质,两个向量坐标形式的运算,属于基础题,着重考查了推理与运算能力.18、(1)2(2)见证明【解析】

(1)设点的坐标为,得出,利用两点间的距离公式以及将关系式代入可求出的值;(2)对直线的斜率是否存在分类讨论。①直线的斜率不存在时,由点、的对称性证明结论;②直线的斜率不存在时,设直线的方程为,设点、,将直线的方程与圆的方程联立,列出韦达定理,通过计算直线和的斜率之和为零来证明结论成立。【详解】(1)证明:设,因为点是圆上任意一点,所以,所以,(2)①当直线的倾斜角为时,因为点、关于轴对称,所以.②当直线的倾斜角不等于时,设直线的斜率为,则直线的方程为.设、,则,.,,.【点睛】本题考查直线与圆的位置关系问题,考查两点间的距离公式、韦达定理在直线与圆的综合问题的处理,本题的关键在于将角的关系转化为斜率之间的关系来处理,另外,利用韦达定理求解直线与圆的综合问题时,其基本步骤如下:(1)设直线的方程以及直线与圆的两交点坐标、;(2)将直线方程与圆的方程联立,列出韦达定理;(3)将问题对象利用代数式或等式表示,并进行化简;(4)将韦达定理代入(3)中的代数式或等式进行化简计算。19、(1)(2)【解析】

(1)不等式为,根据一元二次不等式的解法直接求得结果;(2)根据一元二次不等式与一元二次方程的关系可知的两根为:和,且,利用韦达定理构造方程可求得结果.【详解】(1)当时,由得:,解得:或不等式的解集为:(2)由不等式得:解集为方程的两根为:和,且,即,解得:【点睛】本题考查一元二次不等式的求解、一元二次不等式解集和一元二次方程根的关系;关键是能够根据不等式解集得到方程的根,利用韦达定理求得结果.20、(1)周期为,单调递增区间为;(2).【解析】

(1)利用二倍角降幂公式、两角差的正弦公式将函数的解析式化简为,然后利用周期公式可计算出函数的周期,解不等式即可得出函数的单调递增区间;(2)由计算出的取值范围,可得出的范围,进而可得出函数的值域.【详解】(1),所以,函数的周期为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论