2025届江苏省南京师范大学连云港华杰实验学校数学高一下期末联考模拟试题含解析_第1页
2025届江苏省南京师范大学连云港华杰实验学校数学高一下期末联考模拟试题含解析_第2页
2025届江苏省南京师范大学连云港华杰实验学校数学高一下期末联考模拟试题含解析_第3页
2025届江苏省南京师范大学连云港华杰实验学校数学高一下期末联考模拟试题含解析_第4页
2025届江苏省南京师范大学连云港华杰实验学校数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省南京师范大学连云港华杰实验学校数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式x+5(x-1)A.[-3,1C.[122.已知向量若与平行,则实数的值是()A.-2 B.0 C.1 D.23.若双曲线的中心为原点,是双曲线的焦点,过的直线与双曲线相交于,两点,且的中点为,则双曲线的方程为()A. B. C. D.4.边长为1的正方形上有一动点,则向量的范围是()A. B. C. D.5.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.6.设是等差数列的前项和,若,则()A. B. C. D.7.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.8.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m∥α,m∥β,则α∥β②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中正确的命题是()A.①② B.②③ C.③④ D.④9.在等差数列中,,则()A. B. C. D.10.已知平面向量,,若,则实数()A.-2 B.-1 C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.若两个向量与的夹角为,则称向量“”为向量的“外积”,其长度为.若已知,,,则.12.数列满足:,,则______.13.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.14.已知为直线,为平面,下列四个命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是______.15.函数f(x)=coscos的最小正周期为________.16.某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有___人三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义:对于任意,满足条件且(是与无关的常数)的无穷数列称为数列.(1)若,证明:数列是数列;(2)设数列的通项为,且数列是数列,求常数的取值范围;(3)设数列,若数列是数列,求的取值范围.18.已知函数,且的解集为.(1)求函数的解析式;(2)解关于的不等式,;(3)设,若对于任意的都有,求的最小值.19.在中,分别是角的对边,.(1)求的值;(2)若的面积,,求的值.20.已知数列的前项和为,,.(1)证明:数列是等比数列,并求其通项公式;(2)令,若对恒成立,求的取值范围.21.给定常数,定义函数,数列满足.(1)若,求及;(2)求证:对任意,;(3)是否存在,使得成等差数列?若存在,求出所有这样的,若不存在,说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:x+5(x-1)2≥2⇔x+5≥2(x-1)2且x≠1考点:分式不等式解法2、D【解析】

因为,所以由于与平行,得,解得.3、B【解析】由题可知,直线:,设,,得,又,解得,所以双曲线方程为,故选B。4、A【解析】

分类,按在正方形的四条边上分别求解.【详解】如图,分别以为建立平面直角坐标系,,设,,∴,当在边或上时,,所以,当在边上时,,,当在边上时,,,∴的取值范围是.故选:A.【点睛】本题考查平面向量的数量积,通过建立坐标系,把向量和数量积用坐标表示,使问题简单化.5、A【解析】

根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【点睛】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.6、D【解析】

根据等差数列片断和的性质得出、、、成等差数列,并将和都用表示,可得出的值.【详解】根据等差数列的性质,若数列为等差数列,则也成等差数列;又,则数列是以为首项,以为公差的等差数列,则,故选D.【点睛】本题考查等差数列片断和的性质,再利用片断和的性质时,要注意下标之间的倍数关系,结合性质进行求解,考查运算求解能力,属于中等题.7、A【解析】

利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题8、D【解析】

利用平面与平面垂直和平行的判定和性质,直线与平面平行的判断,对选项逐一判断即可.【详解】①若m∥α,m∥β,则α∥β或α与β相交,错误命题;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β或α与β相交.错误的命题;③m⊂α,n⊂β,m、n是异面直线,那么n与α相交,也可能n∥α,是错误命题;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.是正确的命题.故选D.【点睛】本题考查平面与平面的位置关系,直线与平面的位置关系,考查空间想象力,属于中档题.9、B【解析】

利用等差中项的性质得出关于的等式,可解出的值.【详解】由等差中项的性质可得,由于,即,即,解得,故选:B.【点睛】本题考查等差中项性质的应用,解题时充分利用等差中项的性质进行计算,可简化计算,考查运算能力,属于基础题.10、A【解析】

由题意,则,再由数量积的坐标表示公式即可得到关于的方程,解出它的值【详解】由,,则,即解得:故选:A【点睛】本题考查数量积判断两个平面向量的垂直关系,向量的数量积坐标表示,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

故答案为3.【点评】本题主要考查以向量的数量积为载体考查新定义,利用向量的数量积转化是解决本题的关键,12、【解析】

可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题13、【解析】

先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.14、③④【解析】

①和②均可以找到不符合题意的位置关系,则①和②错误;根据线面垂直性质定理和空间中的平行垂直关系可知③和④正确.【详解】若,此时或,①错误;若,此时或异面,②错误;由线面垂直的性质定理可知,若,则,③正确;两条平行线中的一条垂直于一个平面,则另一条直线必垂直于该平面,可知④正确本题正确结果:③④【点睛】本题考查空间中的平行与垂直关系相关命题的判断,考查学生对于平行与垂直的判定和性质的掌握情况.15、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期为T==216、16【解析】

利用分层抽样的性质,直接计算,即可求得,得到答案.【详解】由题意,可知共有1024名学生、家长、老师参加,其中家长256人,通过分层抽样从中抽取64人,进行某问卷调查,则抽到的家长人数为人.故答案为16【点睛】本题主要考查了分层抽样的应用,其中解答中熟记分层抽样的概念和性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】

(1)根据题中的新定义代入即可证出.(2)设,,,代入通项解不等式组,使即可求解.(3)首先根据可求时,,当时,,根据题中新定义求出成立,可得,再验证恒成立即可求解.【详解】(1),且,则满足,则数列是数列.综上所述,结论是:数列是数列.(2)设,,则,得,,,则数列的最大值为,则(3),当时,当时,,由,得,当时,恒成立,则要使数列是数列,则的取值范围为.【点睛】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.18、(1)(2)答案不唯一,具体见解析(3)1【解析】

(1)根据韦达定理即可。(2)分别对三种情况进行讨论。(3)带入,分别对时三种情况讨论。【详解】(1)的解集为可得1,2是方程的两根,则,(2)时,时,时,(3),为上的奇函数当时,当时,,则函数在上单调递增,在上单调递减,且时,,在时,取得最大值,即;当时,,则函数在上单调递减,在上单调递减,且时,,在时,取得最小值,即;对于任意的都有则等价于或()则的最小值为1【点睛】本题主要考查了含参数的一元二次不等式,以及绝对值不等式,在解决含参数的不等式时首先要对参数进行讨论。本题属于难题。19、(1)4;(2)【解析】

(1)利用两角差的正弦和正弦定理将条件化成,再利用余弦定理代入,即可求得的值;(2)由可求得,的值,再由面积公式求得,结合余弦定理可得,解方程即可得答案.【详解】(1)∵,∴,∴∴,解得:.(2),,,,,∵,∴.【点睛】本题考查两角差的正弦、正弦定理、余弦定理的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.20、(1)证明见解析,(2)【解析】

(1)当时,结合可求得;当且时,利用可整理得,可证得数列为等比数列;根据等比数列通项公式可求得结果;(2)根据等比数列求和公式求得,代入可得;分别在为奇数和为偶数两种情况下根据恒成立,采用分离变量的方法得到的范围,综合可得结果.【详解】(1)当时,,又当且时,数列是以为首项,为公比的等比数列(2)由(1)知:当为奇数时,,即:恒成立当为偶数时,,即:综上所述,若对恒成立,则【点睛】本题考查等比数列知识的综合应用,涉及到利用与关系证明数列为等比数列、等比数列通项公式和求和公式的应用、恒成立

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论