版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
佳木斯市重点中学2025届高一数学第二学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线与圆相交于两点,则弦长()A. B.C. D.2.已知向量,则()A.12 B. C. D.83.在平面直角坐标系中,已知点,点,直线:.如果对任意的点到直线的距离均为定值,则点关于直线的对称点的坐标为()A. B. C. D.4.在等腰梯形ABCD中,,点E是线段BC的中点,若,则A. B. C. D.5.若三棱锥的四个面都为直角三角形,平面,,,则三棱锥中最长的棱长为()A. B. C. D.6.曲线与过原点的直线没有交点,则的倾斜角的取值范围是()A. B. C. D.7.已知锐角三角形的边长分别为1,3,,则的取值范围是()A. B. C. D.8.在区间内任取一个实数,则此数大于2的概率为()A. B. C. D.9.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.6610.如图,在平行四边形中,下列结论中错误的是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;12.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=513.对于下列数排成的数阵:它的第10行所有数的和为________14.已知数列是等差数列,记数列的前项和为,若,则________.15.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.16.已知,,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,满足:,,.(Ⅰ)求与的夹角;(Ⅱ)求.18.已知函数.(1)当时,,求的值;(2)令,若对任意都有恒成立,求的最大值.19.在数列中,,,数列的前项和为,且.(1)证明:数列是等差数列.(2)若对恒成立,求的取值范围.20.在平面直角坐标系中,已知A(-1,0),B(2,0),动点M(x,y)满足MAMB=12,设动点(1)求动点M的轨迹方程,并说明曲线C是什么图形;(2)过点1,2的直线l与曲线C交于E,F两点,若|EF|=455(3)设P是直线x+y+8=0上的点,过P点作曲线C的切线PG,PH,切点为G,H,设C'(-2,0),求证:过21.已知等差数列满足,的前项和为.(1)求及;(2)记,求
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:圆心到直线的距离为,所以弦长为.考点:直线与圆的位置关系.2、C【解析】
根据向量的坐标表示求出,即可得到模长.【详解】由题,,所以.故选:C【点睛】此题考查向量的数乘运算和减法运算的坐标表示,并求向量的模长,关键在于熟记公式,准确求解.3、B【解析】
利用点到直线的距离公式表示出,由对任意的点到直线的距离均为定值,从而可得,求得直线的方程,再利用点关于直线对称的性质即可得到对称点的坐标。【详解】由点到直线的距离公式可得:点到直线的距离由于对任意的点到直线的距离均为定值,所以,即,所以直线的方程为:设点关于直线的对称点的坐标为故,解得:,所以设点关于直线的对称点的坐标为故答案选B【点睛】本题主要考查点关于直线对称的对称点的求法,涉及点到直线的距离,两直线垂直斜率的关系,中点公式等知识点,考查学生基本的计算能力,属于中档题。4、B【解析】
利用平面向量的几何运算,将用和表示,根据平面向量基本定理得,的值,即可求解.【详解】取AB的中点F,连CF,则四边形AFCD是平行四边形,所以,且因为,,,∴故选B.【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中根据平面向量的基本定理,将用和进行表示,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】
根据题意,画出满足题意的三棱锥,求解棱长即可.【详解】因为平面,故,且,则为直角三角形,由以及勾股定理得:;同理,因为则为直角三角形,由,以及勾股定理得:;在保证和均为直角三角形的情况下,①若,则在中,由勾股定理得:,此时在中,由,及,不满足勾股定理故当时,无法保证为直角三角形.不满足题意.②若,则,又因为面ABC,面ABC,则,故面PAB,又面PAB,故,则此时可以保证也为直角三角形.满足题意.③若,在直角三角形BCA中,斜边AB=2,小于直角边AC=,显然不成立.综上所述:当且仅当时,可以保证四棱锥的四个面均为直角三角形,故作图如下:由已知和勾股定理可得:,显然,最长的棱为.故选:B.【点睛】本题表面考查几何体的性质,以及棱长的计算,涉及线面垂直问题,需灵活应用.6、A【解析】
作出曲线的图形,得出各射线所在直线的倾斜角,观察直线在绕着原点旋转时,直线与曲线没有交点时,直线的倾斜角的变化,由此得出的取值范围.【详解】当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为;当,时,由得,该射线所在直线的倾斜角为.作出曲线的图象如下图所示:由图象可知,要使得过原点的直线与曲线没有交点,则直线的倾斜角的取值范围是,故选:A.【点睛】本题考查直线倾斜角的取值范围,考查数形结合思想,解题的关键就是作出图形,利用数形结合思想进行求解,属于中等题.7、B【解析】
根据大边对大角定理知边长为所对的角不是最大角,只需对其他两条边所对的利用余弦定理,即这两角的余弦值为正,可求出的取值范围.【详解】由题意知,边长为所对的角不是最大角,则边长为或所对的角为最大角,只需这两个角为锐角即可,则这两个角的余弦值为正数,于此得到,由于,解得,故选C.【点睛】本题考查余弦定理的应用,在考查三角形是锐角三角形、直角三角形还是钝角三角形,一般由最大角来决定,并利用余弦定理结合余弦值的符号来进行转化,其关系如下:为锐角;为直角;为钝角.8、D【解析】
根据几何概型长度型直接求解即可.【详解】根据几何概型可知,所求概率为:本题正确选项:【点睛】本题考查几何概型概率问题的求解,属于基础题.9、C【解析】
根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【点睛】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.10、C【解析】
根据向量的定义及运算法则一一分析选项正误即可.【详解】在平行四边形中,显然有,,故A,D正确;根据向量的平行四边形法则,可知,故B正确;根据向量的三角形法,,故C错误;故选:C.【点睛】本题考查平面向量的基本定义和运算法则,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.12、1【解析】
根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.13、【解析】
由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【点睛】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.14、1【解析】
由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.15、4【解析】
由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.16、【解析】
根据向量平行的坐标表示可求得;代入两角和差正切公式即可求得结果.【详解】本题正确结果:【点睛】本题考查两角和差正切公式的应用,涉及到向量平行的坐标表示,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(I)利用向量数量积的运算,化简,得到,由此求得的大小.(II)先利用向量的数量积运算,求得的值,由此求得的值.【详解】解:(Ⅰ)因为,所以.所以.因为,所以.(Ⅱ)因为,由已知,,所以.所以.【点睛】本小题主要考查向量数量积运算,考查向量夹角的计算,考查向量模的求法,属于基础题.18、(1);(2)【解析】
(1)根据得,得或,结合取值范围求解;(2)结合换元法处理二次不等式恒成立求参数的取值范围.【详解】(1),即,即有,所以或,即或由于,,所以;(2),令,对任意都有恒成立,即对恒成立,只需,解得:,所以的最大值为.【点睛】此题考查根据三角函数值相等求自变量取值的关系,利用换元法转化为二次函数处理不等式问题,根据不等式恒成立求参数的取值范围,涉及根的分布的问题.19、(1)见解析(2)【解析】
(1)根据已知可变形为常数;(2)首先求数列的通项公式,然后利用裂项相消法求,若满足对恒成立,需满足,,求的取值范围.【详解】(1)证明:因为,所以,,则.又,故数列是以1为首项,2为公差的等差数列.(2)由(1)可知,则.因为,所以,所以.易知单调递增,则.所以,且,解得.故的取值范围为.【点睛】本题考查了证明等差数列的方法,以及裂项相消法求和,本题的一个亮点是与函数结合考查数列的最值问题,涉及最值时,需先判断函数的单调性,可以根据函数特征直接判断单调性或是根据的正负判断单调性,然后求最值.20、(1)动点M的轨迹方程为(x+2)2+y2=4,曲线C是以(-2,0)为圆心,2为半径的圆(2)l的方程为2x-y=0或【解析】
(1)利用两点间的距离公式并结合条件MAMB=12,化简得出曲线C的方程,根据曲线(2)根据几何法计算出圆心到直线的距离d=455,对直线l分两种情况讨论,一是斜率不存在,一是斜率存在,结合圆心到直线的距离d=(3)设点P的坐标为m,-m-8,根据切线的性质得出PG⊥GC',从而可得出过G、P、C'x2【详解】(1)由题意得(x+1)2+y所以动点M的轨迹方程为(x+2)2曲线C是以(-2,0)为圆心,2为半径的圆;(2)①当直线l斜率不存在时,x=1,不成立;②当直线l的斜率存在时,设l:y-2=k(x-1),即kx-y+2-k=0,圆心C(-2,0)到l的距离为d=-3k+21+∴d2=165=(2-3k)2∴l的方程为2x-y=0或2x-29y+56=0;(3)证明:∵P在直线x+y+8=0上,则设P(m,-m-8)∵C'为曲线C的圆心,由圆的切线的性质可得PG⊥GC',∴经过G,P,C'的三点的圆是以PC'为直径的圆,则方程为(x+2)(x-m)+y(y+m+8)=0,整理可得x2令x2+y解得x=-2y=0或则有经过G,P,C'三点的圆必过定点,所有定点的坐标为(-2,0),(-5,-3).【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工程队建房施工承包合同范本参考范文
- 2024至2030年中国水箱清洁剂数据监测研究报告
- 2024至2030年中国防静电彩色环氧地坪数据监测研究报告
- 2024至2030年中国汽缸体数据监测研究报告
- 2024至2030年中国多功能震压制砖机行业投资前景及策略咨询研究报告
- 医疗男科培训
- 人民银行3号令培训
- 内蒙古巴彦淖尔市(2024年-2025年小学五年级语文)统编版专题练习(下学期)试卷及答案
- 湖北省宜昌市(2024年-2025年小学五年级语文)人教版专题练习((上下)学期)试卷及答案
- 水利水电锅炉更换工程合同
- 城轨机电专业职业生涯规划
- 电力电缆及附件基础知识
- 中学生社会实践调查报告:爬山走人生
- 《冲突管理》课件2
- 可再生能源的社会效益与可再生能源
- 风光水多能互补电站建设
- 地中海贫血教学查房课件
- 校园安全敲门行动方案
- 《幼儿园教育活动设计》-07-幼儿园科学教育与活动指导课件
- PLM项目管理系统教程
- 售楼处装修工程施工进度表7.31
评论
0/150
提交评论