2024年中考数学一轮复习考点08 一次不等式(组)(精练)(解析版)34_第1页
2024年中考数学一轮复习考点08 一次不等式(组)(精练)(解析版)34_第2页
2024年中考数学一轮复习考点08 一次不等式(组)(精练)(解析版)34_第3页
2024年中考数学一轮复习考点08 一次不等式(组)(精练)(解析版)34_第4页
2024年中考数学一轮复习考点08 一次不等式(组)(精练)(解析版)34_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点08.一次不等式(组)(精练)限时检测1:最新各地模拟试题(40分钟)1.(2023·河北·统考模拟预测)语句“的与的和不超过”可以表示为()A. B. C. D.【答案】A【分析】x的即x,不超过5是小于或等于5的数,由此列出式子即可.【解析】“x的与x的和不超过5”用不等式表示为x+x≤5.故选A.【点睛】本题考查了由实际问题抽象出不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.1.(2023·河北保定·统考模拟预测)已知数轴上两点,表示的数分别为,1,那么关于的不等式的解集,下列说法正确的是()A.若点在点左侧,则解集为B.若点在点右侧,则解集为C.若解集为,则点必在点左侧D.若解集为,则点必在点右侧【答案】C【分析】根据不等式的性质化简求值即可.【详解】关于的不等式化为,当时,解集为,此时点在原点左侧,故A,B,D选项错误,C选项正确,故选C.【点睛】此题考查了不等式性质,解题的关键是熟悉不等式的基本性质.2.(2023·广东·中考一模)不等式组的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】先分别求出两个不等式的解,得出不等式组的解,再在数轴上的表示出解集即可.【详解】解:解不等式①得,解不等式②得,不等式组的解集为,在数轴上表示为,故选:C.【点睛】本题考查了一元一次不等式组的解法和解集的表示,解题关键是熟练运用解不等式组的方法求解,准确在数轴上表示解集.4.(2023·广东潮州·统考一模)若实数满足:,则实数的整数解有(

)个A.8 B.7 C.6 D.5【答案】B【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解),最后求出整数解.【详解】解:由可得:,解不等式组得:,整数解有1,2,3,4,5,6,7共7个.故选:B.【点睛】此题主要考查了一元一次不等式组的解法,其中正确解不等式,求出解集是解答本题的关键.5.(2023·河北石家庄·校联考二模)课堂上,老师给出了这样一道题目:“求关于x的一元一次不等式组的解集,并在数轴上表示出解集”,甲计算完之后,说:“老师,这道题有问题,解出来是无解,不能在数轴上表示.”乙看了看甲的计算过程,说:“你把第2个式子抄错了,是数字3,不是你这个.”通过甲、乙两人的对话,你认为甲将数字3可能抄成了数字()A.1 B.2 C.4 D.5【答案】D【分析】设甲将数字3抄成了数字a,根据不等式组无解,求出的取值范围,即可得出结果.【详解】解:设甲将数字3抄成了数字a,,解不等式①得:,解不等式②得:,∵此不等式组无解,∴,解得:,∴甲将数字3可能抄成了数字5,故选:D.【点睛】本题考查根据不等式组的解集情况求参数的值,正确的计算出不等式组的解集,是解题的关键.6.(2023·河北邢台·统考二模)若不等式组的解集是,则不等式②可以是(

)A. B. C. D.【答案】A【分析】分别求出每一个选项的解集,再与①组合,即可判断.【详解】解:解①得,A、解得,,则不等式组的解集为,本选项符合题意;B、解得,,则不等式组的无解,本选项不符合题意;C、解得,,则不等式组的无解,本选项不符合题意;D、解得,,则不等式组的解集为,本选项不符合题意;故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(2023·四川攀枝花·校考一模)每年3月12日是“植树节”,某班为响应“绿水青山就是金山银”的理念,在植树节这天组织学生开展植树活动,老师提前购买了一定数量的小树苗,在分发树苗的过程中,若每人种3棵,则多出86棵,若每人种5棵,则有一人可分得但不足3棵,则这批小树苗共有()A.122棵 B.186棵 C.212棵 D.221棵【答案】D【分析】设有x人植树,则这批小树苗共有棵,根据题意即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合x为正整数即可得出结论.【详解】解:设有x人植树,则这批小树苗共有棵,由题意得:,解得:,又∵x为正整数,∴,∴,故选:D.【点睛】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.8.(2023·重庆九龙坡·统考二模)若对于任意实数x,表示不超过x的最大整数,例如那么以下说法正确的有(

)①;

②;

③若满足,则;④若=,则;

⑤对于任意的实数x,均有:A.1个 B.2个 C.3个 D.4个【答案】B【分析】根新定义依次进行分析即可.【详解】解∵,∴①错误;∵,,∴②错误;∵,∴,∴,∴③错误;∵设=,∴,,∴,∴④正确;当x为整数时,,,∴,当x为小数,设,当且小数部分大于等于0.5时,,,∴,当且小数部分小于0.5时,,,∴,∴⑤正确;故选:B.【点睛】本题考查新定义,解题的关键是正确理解新定义.9.(2023·山西长治·校联考二模)2023年春节,全国各大景点“人从众”现象刷屏,各大景区门票预定量同比暴涨3.2倍,某景区为吸引游客推出两套家庭优惠方案,方案一:享受1人免票,其余人8折优惠;方案二:所有人享受7折优惠,若晓鹏一家出游选择方案一更划算,则晓鹏家去旅游的至多人.【答案】7【分析】设晓鹏家有x人去旅游,根据两种方案分别列出代数式,选择方案一更划算则方案一的费用小于方案二的费用,列不等式并求解即可.【详解】解:设晓鹏家有x人去旅游,门票原价为a元,且方案一门票费用:,方案二门票费用:,由题意得:,,解得:,晓鹏家去旅游的至多有7人;故答案为:7.【点睛】本题考查方案选择问题,解题的关键是运用等量关系:门票总费用折扣票价人数,根据选择的方案列不等式并求解,解题易错点是选择费用较低的方案.10.(2023·江苏扬州·校考二模)已知关于x的不等式的解也是不等式的解,则常数a的取值范围是_____.【答案】【分析】先把a看作常数求出两个不等式的解集,再根据同小取小列出不等式求解即可.【详解】解:关于x的不等式,解得:,关于x的不等式的解也是不等式的解,,不等式的解集是,,解得:,,,故答案为:.【点睛】本题考查了一元一次不等式的解法,解题的关键是分别求出两个不等式的解集,再根据同小取小列出关于a的不等式,注意在不等式两边都除以一个负数时,应只改变不等号的方向.11.(2023·广西·统考模拟预测)如果一元一次方程的解是一元一次不等式组的解.则称该一元一次方程为该一元一次不等式组的关联方程.若方程是关于x的不等式组的关联方程,则n的取值范围是___________.【答案】【分析】解一元一次方程得出方程的解,代入不等式组可得答案.【详解】解:解方程得,∵为不等式组的解,∴,解得,即n的取值范围为:,故答案为:.【点睛】本题主要考查解一元一次不等式组和一元一次方程,解题的关键是理解并掌握“关联方程”的定义和解一元一次不等式组、一元一次方程的能力.12.(2023·重庆·校考二模)“几处早莺争暖树,谁家春燕啄春泥”,阳春三月,春暖花开,某校决定组织该校七年级全部学生进行春游活动,需要租用甲、乙、丙三种不同型号的巴士出行.已知甲种巴士的载客人数是乙种巴士载客人数的2倍,丙种巴士每辆载客40人,且丙种巴士的载客人数不低于乙种巴士的载客人数,不超过甲种巴士的载客人数.现在学校预计租用甲、丙两种巴士共10辆及若干辆乙种巴士,这样七年级学生刚好能全部坐满每辆车,且乘坐乙种巴士和丙种巴士的有440人.结果在出发前若干学生因故不能参加春游活动,这样学校就可以少租1辆乙种巴士,且有一辆乙种巴士还空了5个位置(其余车辆仍是满载),这样乘坐甲种巴士和乙种巴士的共505人,则该校七年级有______学生.【答案】740【分析】设甲型巴士a辆,乙型巴士b辆,丙型巴士辆,乙型巴士载x人,甲型巴士载2x人,根据题意,得,求得x,b,后根据不等式的性质,取值的整数性质,讨论计算即可.【详解】解:设甲型巴士a辆,乙型巴士b辆,丙型巴士辆,乙型巴士载x人,甲型巴士载2x人,根据题意,得,解得,因为,所以;因为,且a为整数,b为整数,x为整数,所以,所以(人),故答案为:740.【点睛】本题考查了方程组的解法,不等式组的解法,整数的性质,熟练掌握方程组的解法,不等式组的解法是解题的关键.13.(2023·江西赣州·统考一模)把下列解题过程补充完整.解不等式组:,并将解集在数轴上表示出来.解:由①得:,把②去分母得:,解得:,在数轴上表示如下:

所以不等式组的解集为:.【答案】答案见解析【分析】解一元一次不等式组,按要求进行作答即可.【详解】解:,解:由①得:,把②去分母得:,解得:,在数轴上表示如下:

所以不等式组的解集为:,故答案为:;;;

;.【点睛】本题考查了解一元一次不等式组,在数轴上表示解集.解题的关键在于正确的运算.14.(2023·河北石家庄·统考一模)如图1,将两条重合的线段绕一个公共端点沿逆时针和顺时针方向分别旋转,旋转角为,所得的两条新线段夹角为,以为内角,以图中线段为边作两个正多边形,正多边形边数为n.如图2,当时,得到两个正六边形.边数n456…旋转角90°108°120°…夹角180°m120°…(1)用含的代数式表示,;(2)边数n,旋转角,夹角的部分对应值如表格所示,其中;(3)若,则n的最小值是.【答案】14472【分析】(1)由周角的含义建立方程即可;(2)把代入(1)中的结论可得答案;(3)由,可得,解得:,利用多边形的内角和公式可得,而且为整数,从而可得答案.【详解】解:(1)由题意可得:,∴,故答案为:.(2)由题意可得:当时,∴,故答案为:;(3)当,∴,解得:,∴,而且为整数,∴,解得:,∴的最小值为:.故答案为:.【点睛】本题考查的是旋转的性质,正多边形的性质,利用正多边形的性质建立方程或不等式求解是解本题的关键.15.(2023·河北沧州·统考二模)解方程组.(1)下面给出了部分解答过程:将方程②变形:,即把方程①代入③得:…请完成解方程组的过程;(2)若方程的解满足,求整数a的值.【答案】(1)(2)2或3【分析】(1)把方程①整体代入③得到关于y的方程,求得,再把代入①得到,从而得到方程组的解;(2)把方程组的解代入得到关于a的不等式组,解不等式组求出整数解即可.【详解】(1)下面给出了部分解答过程:将方程②变形:,即把方程①代入③得:,解得:,把代入①得:,∴原方程组的解是;(2)由(1)可知方程的解为,∵方程的解满足,∴,解得.∴整数a为2或3.【点睛】此题考查了二元一次方程组的解法,一元一次不等式组的整数解等知识,读懂题意,熟练掌握方程组和不等式组的解法是解题的关键.16.(2023·福建梅列·九年级期中)阅读理解题:(1)原理:对于任意两个实数、,若,则和同号,即:或若,则和异号,即:或(2)分析:对不等式来说,把和看成两个数和,所以按照上述原理可知:(Ⅰ)或(Ⅱ),所以不等式的求解就转化求解不等式组(Ⅰ)和(Ⅱ).(3)应用:解不等式:①;②【答案】(3)①或;②【分析】(3)①根据题中所给方法进行分类求解不等式即可;②先提取公因式,然后再根据题中所给方法进行求解即可.【详解】解:(3)①,∴当时,解得:;当时,解得:;∴原不等式的解集为或;②∴当时,解得:;当时,不等式组无解;∴原不等式的解集为.【点睛】本题主要考查不等式组的求解,解题的关键是根据题中所给方法进行求解.17.(2023年重庆九年级期中)近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?【答案】(1)甲、乙两种头盔的单价各是65元,54元.(2)购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【分析】(1)设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得,求解;(2)设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,则,解得,故最小整数解为,,根据一次函数增减性,求得最小值=.【详解】(1)解:设购买乙种头盔的单价为x元,则甲种头盔的单价为元,根据题意,得解得,,,答:甲、乙两种头盔的单价各是65元,54元.(2)解:设购m只甲种头盔,此次购买头盔的总费用最小,设总费用为w,则,解得,故最小整数解为,,∵,则w随m的增大而增大,∴时,w取最小值,最小值.答:购14只甲种头盔,此次购买头盔的总费用最小,最小费用为1976元.【点睛】本题考查一元一次方程的应用,一次函数的性质,一次函数的应用、一元一次不等式的应用;根据题意列出函数解析式,确定自变量取值范围是解题的关键.18.(2023·山东·九年级期中)某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:水果品种梨子菠萝苹果车厘子批发价格(元/kg)45640零售价格(元/kg)56850请解答下列问题:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?【答案】(1)500元;(2)方案一购进88kg菠萝,210kg苹果;方案二购进94kg菠萝,205kg苹果.【分析】(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,根据该经营户用1700元批发了菠萝和苹果共300kg,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论;(2)设购进菠萝mkg,则购进苹果,根据“菠梦的进货量不低于88kg,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m,均为正整数,即可得出各进货方案.【详解】(1)解:设第一天,该经营户批发菠萝xkg,苹果ykg,根据题意得:,解得:,∴元,答:这两种水果获得的总利润为500元;(2)解:设购进菠萝mkg,则购进苹果,根据题意:,解得:,∵m,均为正整数,∴m取88,94,∴该经营户第二天共有2种批发水果的方案,方案一购进88kg菠萝,210kg苹果;方案二购进94kg菠萝,205kg苹果.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.19.(2023·湖北·九年级期末)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:甲型客车乙型客车载客量(人/辆)3530租金(元/辆)400320学校计划此次劳动实践活动的租金总费用不超过3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?【答案】(1)参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人(2)一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆(3)学校租车总费用最少是2800元.【分析】(1)设参加此次劳动实践活动的老师有x人,根据参加实践活动的学生人数的两种不同表示方法作为等量关系列方程;(2)首页判断车辆总数为8,设租甲型客车m辆,列出不等式组求出整数解即可;(3)列出函数解析式w=80m+2560,结合自变量取值范围求出最少总费用.【详解】(1)设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:,解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.【点睛】本题考查一元一次方程的实际应用、利用一次函数解决最小利润问题,解决问题的关键是根据题意得到相等关系或不相等关系列出方程、不等式组以及函数解析式解决问题.20.(2023·北京市九年级期末)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:鞋号(正整数)222324252627……脚长(毫米)……为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据定义为如表2:序号n123456……鞋号222324252627……脚长……脚长160165170175180185……定义:对于任意正整数m、n,其中.若,则.如:表示,即.(1)通过观察表2,猜想出与序号n之间的关系式,与序号n之间的关系式;(2)用含的代数式表示;计算鞋号为42的鞋适合的脚长范围;(3)若脚长为271毫米,那么应购鞋的鞋号为多大?【答案】(1),;(2)鞋号为42的鞋适合的脚长范围是;(3)应购买44号的鞋.【分析】(1)观察表格里的数据,可直接得出结论;(2)把n用含有an的式子表示出来,代入化简整理,再计算鞋号为42对应的n的值,代入求解即可;(3)首先计算,再代入求出的值即可.【详解】(1)(2)由与解得:把代入得所以则得:,即答:鞋号为42的鞋适合的脚长范围是.(3)根据可知能被5整除,而所以将代入中得故应购买44号的鞋.【点睛】此题主要考查了方程与不等式的应用,读懂题意是解题的关键.限时检测2:最新各地中考真题(40分钟)1.(2023·四川雅安·统考中考真题)不等式组的解集是(

)A. B. C. D.【答案】D【分析】分别求解两个不等式,得到不等式组的解集,然后判断即可.【详解】解:解不等式①得:,解不等式②得:,∴不等式组的解集为:,故选:D.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2021·浙江丽水市·中考真题)若,两边都除以,得()A. B. C. D.【答案】A【分析】利用不等式的性质即可解决问题.【详解】解:,两边都除以,得,故选:A.【点睛】本题考查了解简单不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.3.(2023年山东省济南市中考数学真题)实数,在数轴上对应点的位置如图所示,则下列结论正确的是()

A.B.C.D.【答案】D【分析】根据题意可得,然后根据数的乘法和加法法则以及不等式的性质进行判断即可.【详解】解:由题意可得:,所以,∴,观察四个选项可知:只有选项D的结论是正确的;故选:D.【点睛】本题考查了实数与数轴以及不等式的性质,正确理解题意、得出是解题的关键.4.(2022年山东省聊城市中考数学真题)关于,的方程组的解中与的和不小于5,则的取值范围为(

)A. B. C. D.【答案】A【分析】由两式相减,得到,再根据x与y的和不小于5列出不等式即可求解.【详解】解:把两个方程相减,可得,根据题意得:,解得:.所以的取值范围是.故选:A.【点睛】本题考查二元一次方程组、不等式,将两式相减得到x与y的和是解题的关键.5.(2023·四川遂宁·统考中考真题)若关于x的不等式组的解集为,则a的取值范围是(

)A. B. C. D.【答案】D【分析】分别求出各不等式的解集,再根据不等式组的解集是求出a的取值范围即可.【详解】解:解不等式①得:,解不等式②得:,∵关于的不等式组的解集为,∴,故选:D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.(2023年内蒙古中考数学真题)不等式的正整数解的个数有(

)A.3个 B.4个 C.5个 D.6个【答案】A【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出正整数解得个数.【详解】解:,∴正整数解为:,有个,故选A.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.7.(2022·四川宜宾·统考中考真题)不等式组的解集为______.【答案】【分析】先分别求出不等式组中每一个不等式的解集,再根据确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”确定出不等式组的公共解集即可.【详解】解:,解①得:x≤–1,解②得:x>-4,∴-4<x≤-1.故答案为:-4<x≤-1.【点睛】本题考查解不等式组,掌握确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”是解题的关键.8.(2023·四川凉山·统考中考真题)不等式组的所有整数解的和是_________.【答案】7【分析】先分别解不等式组中的两个不等式,得到不等式组的解集,再确定整数解,最后求和即可.【详解】解:,由①得:,∴,解得:;由②得:,整理得:,解得:,∴不等式组的解集为:,∴不等式组的整数解为:,,0,1,2,3,4;∴,故答案为:7【点睛】本题考查的是求解一元一次不等式组的整数解,熟悉解一元一次不等式组的方法与步骤是解本题的关键.9.(2023年黑龙江省大庆市中考数学真题)若关于的不等式组有三个整数解,则实数的取值范围为.【答案】【分析】首先解不等式组求得解集,然后根据不等式组有三个整数解,确定整数解,则可以得到一个关于的不等式组求得的范围.【详解】解:解不等式,得:,解不等式,得:,不等式组有三个整数解,不等式组的整数解为,0、1,则,解得.故答案为:.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.(2023年湖北省黄石市中考数学真题)若实数使关于的不等式组的解集为,则实数的取值范围为.【答案】【分析】根据不等式的性质解一元一次不等组,再根据不等式组的取值方法即可且求解.【详解】解:,由①得,;由②得,;∵解集为,∴,故答案为:.【点睛】本题主要考查解不等式组,求不等式组解集,掌握解不等式组的方法,不等组的取值方法等知识是解题的关键.11.(2023年山东省聊城市中考数学真题)若不等式组的解集为,则m的取值范围是.【答案】/【分析】分别求出两个不等式的解集,根据不等式组的解集即可求解.【详解】解:,解不等式①得:,解不等式②得:,∵不等式组的解集为:,∴.故答案为:.【点睛】本题考查了解一元一次不等式组,根据不等式的解求参数的取值范围,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.12.(2023年重庆市中考数学真题(B卷))若关于x的不等式组的解集为,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.【答案】13【分析】先求出一元一次不等式组中两个不等式的解集,从而可得,再解分式方程可得且,从而可得且,然后将所有满足条件的整数的值相加即可得.【详解】解:,解不等式①得:,解不等式②得:,∵关于的不等式组的解集为,,解得,方程可化为,解得,关于的分式方程的解为正数,且,解得且,且,则所有满足条件的整数的值之和为,故答案为:13.【点睛】本题考查了一元一次不等式组、分式方程,熟练掌握不等式组和分式方程的解法是解题关键.13.(2023年重庆市中考数学真题(A卷))若关于x的一元一次不等式组,至少有2个整数解,且关于y的分式方程有非负整数解,则所有满足条件的整数a的值之和是.【答案】4【分析】先解不等式组,确定a的取值范围,再把分式方程去分母转化为整式方程,解得,由分式方程有正整数解,确定出a的值,相加即可得到答案.【详解】解:解不等式①得:,解不等式②得:,∴不等式的解集为,∵不等式组至少有2个整数解,∴,解得:;∵关于y的分式方程有非负整数解,∴解得:,即且,解得:且∴a的取值范围是,且∴a可以取:1,3,∴,故答案为:4.【点睛】本题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解题关键.14.(2022·四川绵阳·统考中考真题)已知关于x的不等式组无解,则的取值范围是_________.【答案】【分析】分别求出每一个不等式的解集,根据口诀:大大小小找不到并结合不等式组的解集可得答案.【详解】解∶,解不等式①得:,解不等式②得:,∵不等式组无解,∴,解得:,∴.故答案为:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2022·四川成都·统考中考真题)计算:.(2)解不等式组:.【答案】(1)1;(2)【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(1)===1.(2)不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2021·四川成都·统考中考真题)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.(1)求每个B型点位每天处理生活垃圾的吨数;(2)由于《条例》的施行,垃圾分类要求提高,现在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?【答案】(1)38吨;(2)3个【分析】(1)设每个B型点位每天处理生活垃圾的吨数为x,则A型为x+7,由每天需要处理生活垃圾920吨列出方程求解即可;(2)设至少需要增设y个A型点位才能当日处理完所有生活垃圾.则B型为5-y,根据两种需要处理的生活垃圾和不低于910吨列不等式求解即可.【详解】解:(1)设每个B型点位每天处理生活垃圾的吨数为x,则A型为x+7,由题意得:10x+12(x+7)=920,解得:x=38,答:每个B型点位每天处理生活垃圾为38吨数;(2)设至少需要增设y个A型点位才能当日处理完所有生活垃圾.则B型为5-y.由题意得(12+y)(38+7-8)+(10+5-y)(38-8)≥920-10解得:y≥,∵y为整数∴至少需要增设3个A型点位,答:至少需要增设3个A型点位才能当日处理完所有生活垃圾.【点睛】本题考查一元一次方程以及一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出关系式是解题关键.17.(2023年湖北省恩施州中考数学真题)为积极响应州政府“悦享成长·书香恩施”的号召,学校组织150名学生参加朗诵比赛,因活动需要,计划给每个学生购买一套服装.经市场调查得知,购买1套男装和1套女装共需220元;购买6套男装与购买5套女装的费用相同.(1)男装、女装的单价各是多少?(2)如果参加活动的男生人数不超过女生人数的,购买服装的总费用不超过17000元,那么学校有几种购买方案?怎样购买才能使费用最低,最低费用是多少?【答案】(1)男装单价为100元,女装单价为120元.(2)学校有11种购买方案,当女装购买90套,男装购买60套时,所需费用最少,最少费用为16800元【分析】(1)设男装单价为x元,女装单价为y元,根据题意列方程组求解即可;(2)设参加活动的女生有a人,则男生有人,列不等式组找到a的取值范围,再设总费用为w元,得到w与a的关系,根据一次函数的性质可得当a取最小值时w有最小值,据此求解即可.【详解】(1)解:设男装单价为x元,女装单价为y元,根据题意得:,解得:.答:男装单价为100元,女装单价为120元.(2)解:设参加活动的女生有a人,则男生有人,根据题意可得,解得:,∵a为整数,∴a可取90,91,92,93,94,95,96,97,98,99,100,一共11个数,故一共有11种方案,设总费用为w元,则,∵,∴当时,w有最小值,最小值为(元).此时,(套).答:当女装购买90套,男装购买60套时,所需费用最少,最少费用为16800元.【点睛】本题考查二元一次方程组和一元一次不等式组的应用,找到题中的等量关系或不等关系是解题的关键.18.(2023·四川成都·统考中考真题)年月日至月日,第届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买,两种食材制作小吃.已知购买千克种食材和千克种食材共需元,购买千克种食材和千克种食材共需元.(1)求,两种食材的单价;(2)该小吃店计划购买两种食材共千克,其中购买种食材千克数不少于种食材千克数的倍,当,两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【答案】(1)种食材单价是每千克元,种食材单价是每千克元(2)种食材购买千克,种食材购买千克时,总费用最少,为元【分析】(1)设种食材的单价为元,种食材的单价为元,根据题意列出二元一次方程组,解方程组即可求解;(2)设种食材购买千克,则种食材购买千克,根据题意列出不等式,得出,进而设总费用为元,根据题意,,根据一次函数的性质即可求解.【详解】(1)解:设种食材的单价为元,种食材的单价为元,根据题意得,,解得:,答:种食材的单价为元,种食材的单价为元;(2)解:设种食材购买千克,则种食材购买千克,根据题意,解得:,设总费用为元,根据题意,∵,随的增大而增大,∴当时,最小,∴最少总费用为(元)【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出方程组,不等式以及一次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论