2023-2024学年湖北省孝感市孝昌县中考联考数学试卷含解析_第1页
2023-2024学年湖北省孝感市孝昌县中考联考数学试卷含解析_第2页
2023-2024学年湖北省孝感市孝昌县中考联考数学试卷含解析_第3页
2023-2024学年湖北省孝感市孝昌县中考联考数学试卷含解析_第4页
2023-2024学年湖北省孝感市孝昌县中考联考数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省孝感市孝昌县中考联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.下列算式中,结果等于a5的是()A.a2+a3 B.a2•a3 C.a5÷a D.(a2)32.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.点A(-2,5)关于原点对称的点的坐标是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)4.如图,在中,边上的高是()A. B. C. D.5.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为A.60元B.70元C.80元D.90元6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个 B.2个 C.3个 D.4个7.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为A.1 B.3 C.0 D.1或38.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100° B.110° C.120° D.130°9.“a是实数,|a|≥0”这一事件是()A.必然事件 B.不确定事件 C.不可能事件 D.随机事件10.若a是一元二次方程x2﹣x﹣1=0的一个根,则求代数式a3﹣2a+1的值时需用到的数学方法是()A.待定系数法B.配方C.降次D.消元二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系xOy中,点A、B为反比例函数(x>0)的图象上两点,A点的横坐标与B点的纵坐标均为1,将(x>0)的图象绕原点O顺时针旋转90°,A点的对应点为A′,B点的对应点为B′.此时点B′的坐标是_____.12.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(∠ACD和∠BCD)分别是60°,45°.那么路况警示牌AB的高度为_____.13.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为_______.14.分解因式:4x2﹣36=___________.15.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是______.16.在正方形中,,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,,则和之间的关系是__________(用含的代数式表示).三、解答题(共8题,共72分)17.(8分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.(1)求证:△PMN是等腰三角形;(2)将△ADE绕点A逆时针旋转,①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.18.(8分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.分别求每台型,型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?19.(8分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为,图①中的m的值为;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.20.(8分)如图,在直角坐标系中△ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC同在P点一侧),画出△A′B′C′关于y轴对称的△A′'B′'C′';(2)写出点A'的坐标.21.(8分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;(1)求证:AM=FM;(2)若∠AMD=a.求证:=cosα.22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.23.(12分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点.点B,C的坐标分别为______,______;是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;连接PB,若E为PB的中点,连接OE,则OE的最大值______.24.“食品安全”受到全社会的广泛关注,我区兼善中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为°;(2)请补全条形统计图;(3)若对食品安全知识达到“了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题解析:A、a2与a3不能合并,所以A选项错误;B、原式=a5,所以B选项正确;C、原式=a4,所以C选项错误;D、原式=a6,所以D选项错误.故选B.2、D【解析】

判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.【详解】当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,

当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,

故选D.【点睛】本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.3、B【解析】

根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2,−5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).4、D【解析】

根据三角形的高线的定义解答.【详解】根据高的定义,AF为△ABC中BC边上的高.故选D.【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键.5、C【解析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.6、A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.7、B【解析】

直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.【详解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.8、B【解析】

根据同弧所对的圆周角是圆心角度数的一半即可解题.【详解】∵∠BOC=40°,∠AOB=180°,∴∠BOC+∠AOB=220°,∴∠D=110°(同弧所对的圆周角是圆心角度数的一半),故选B.【点睛】本题考查了圆周角和圆心角的关系,属于简单题,熟悉概念是解题关键.9、A【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.10、C【解析】

根据一元二次方程的解的定义即可求出答案.【详解】由题意可知:a2-a-1=0,

∴a2-a=1,

或a2-1=a

∴a3-2a+1

=a3-a-a+1

=a(a2-1)-(a-1)

=a2-a+1

=1+1

=2

故选:C.【点睛】本题考查了一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义.二、填空题(本大题共6个小题,每小题3分,共18分)11、(1,-4)【解析】

利用旋转的性质即可解决问题.【详解】如图,由题意A(1,4),B(4,1),A根据旋转的性质可知′(4,-1),B′(1,-4);

所以,B′(1,-4);故答案为(1,-4).【点睛】本题考查反比例函数的旋转变换,解题的关键是灵活运用所学知识解决问题.12、m【解析】

由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.【详解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45∘,CD=∴BD=CD=.∴AB=AD-BD=4-=路况警示牌AB的高度为m.故答案为:m.【点睛】解直角三角形的应用-仰角俯角问题.13、(3,2).【解析】

过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【详解】过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案为(3,2).【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、4(x+3)(x﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式进行因式分解.详解:原式=.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.15、1或2【解析】

先根据非负数的性质列式求出x、y的值,再分x的值是腰长与底边两种情况讨论求解.【详解】根据题意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰长时,三角形的三边分别为5、5、7,三角形的周长为1.②5是底边时,三角形的三边分别为5、7、7,能组成三角形,5+7+7=2;所以,三角形的周长为:1或2;故答案为1或2.【点睛】本题考查了等腰三角形的性质,绝对值与算术平方根的非负性,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.16、或【解析】

当F在边AB上时,如图1作辅助线,先证明≌,得,,根据正切的定义表示即可;当F在BA的延长线上时,如图2,同理可得:≌,表示AF的长,同理可得结论.【详解】解:分两种情况:

当F在边AB上时,如图1,

过E作,交AB于G,交DC于H,

四边形ABCD是正方形,

,,,

,,

≌,

中,,

即;

当F在BA的延长线上时,如图2,

同理可得:≌,

中,.【点睛】本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论.三、解答题(共8题,共72分)17、(1)见解析;(2)①见解析;②279【解析】

(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,∵点N,P是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如图2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵点M、N、P分别是线段DE、BC、CD的中点,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如图4,连接AM,∵M是DE的中点,N是BC的中点,AB=AC,∴A、M、N共线,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如图3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=12CE,PN=118、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一:型挖据机7台,型挖掘机5台;方案二:型挖掘机8台,型挖掘机4台;方案三:型挖掘机9台,型挖掘机3台.当A型挖掘机7台,型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得解得所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.(2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得,因为,解得,又因为,解得,所以.所以,共有三种调配方案.方案一:当时,,即型挖据机7台,型挖掘机5台;方案二:当时,,即型挖掘机8台,型挖掘机4台;方案三:当时,,即型挖掘机9台,型挖掘机3台.,由一次函数的性质可知,随的减小而减小,当时,,此时型挖掘机7台,型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.19、(I)150、14;(II)众数为3天、中位数为4天,平均数为3.5天;(III)700人【解析】

(I)根据1天的人数及其百分比可得总人数,总人数减去其它天数的人数即可得m的值;(II)根据众数、中位数和平均数的定义计算可得;(III)用总人数乘以样本中5天、6天的百分比之和可得.【详解】解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,故答案为150、14;(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,平均数为=3.5天;(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.20、(1)见解析;(2)点A'的坐标为(-3,3)【解析】

解:(1),△A′'B′'C′'如图所示.(2)点A'的坐标为(-3,3).21、(1)见解析;(2)见解析.【解析】

(1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.(2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且∠DCG=90°,∴∠DGC=45°从而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋转可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足为N∵△ADM≌△MFH∴DM=MH,AM=MF=AF∵FH=FG,FN⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=DG∵cos∠FMG=∴cos∠AMD=∴=cosα【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.22、详见解析.【解析】试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.23、(1)B(1,0),C(0,﹣4);(2)点P的坐标为:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到=2,设OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(﹣1,﹣2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大.试题解析:(1)在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论