![甘肃省天水地区2025届高一数学第二学期期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view5/M01/19/00/wKhkGGZrjRCALmYGAAHBnd0F0EY739.jpg)
![甘肃省天水地区2025届高一数学第二学期期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view5/M01/19/00/wKhkGGZrjRCALmYGAAHBnd0F0EY7392.jpg)
![甘肃省天水地区2025届高一数学第二学期期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view5/M01/19/00/wKhkGGZrjRCALmYGAAHBnd0F0EY7393.jpg)
![甘肃省天水地区2025届高一数学第二学期期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view5/M01/19/00/wKhkGGZrjRCALmYGAAHBnd0F0EY7394.jpg)
![甘肃省天水地区2025届高一数学第二学期期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view5/M01/19/00/wKhkGGZrjRCALmYGAAHBnd0F0EY7395.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水地区2025届高一数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.2.若函数有零点,则实数的取值范围为()A. B. C. D.3.已知扇形的圆心角,弧长为,则该扇形的面积为()A. B. C.6 D.124.如图,设是正六边形的中心,则与相等的向量为()A. B. C. D.5.已知是等差数列,且,,则()A.-5 B.-11 C.-12 D.36.如图,是圆的直径,点是半圆弧的两个三等分点,,,则()A. B. C. D.7.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为()A. B. C. D.8.如图,在中,,用向量,表示,正确的是A. B.C. D.9.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.610.若,则是()A.等边三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)12.已知函数,,则的最大值是__________.13.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为_________.14.已知数列的通项公式是,若将数列中的项从小到大按如下方式分组:第一组:,第二组:,第三组:,…,则2018位于第________组.15.实数2和8的等比中项是__________.16.若,其中是第二象限角,则____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为锐角,.(1)求的值;(2)求的值.18.已知数列的前项和,函数对任意的都有,数列满足.(1)求数列,的通项公式;(2)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在请求出的取值范围;若不存在请说明理由.19.如图,是边长为2的正三角形.若,平面,平面平面,,且.(1)求证:平面;(2)求证:平面平面.20.设向量,,.(1)若,求实数的值;(2)求在方向上的投影.21.已知数列的前项和,且;(1)求它的通项.(2)若,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.2、D【解析】
令,得,再令,得出,并构造函数,将问题转化为直线与函数在区间有交点,利用数形结合思想可得出实数的取值范围.【详解】令,得,,令,则,所以,,构造函数,其中,由于,,,所以,当时,直线与函数在区间有交点,因此,实数的取值范围是,故选D.【点睛】本题考查函数的零点问题,在求解含参函数零点的问题时,若函数中只含有单一参数,可以采用参变量分离法转化为参数直线与定函数图象的交点个数问题,难点在于利用换元法将函数解析式化简,考查数形结合思想,属于中等题.3、A【解析】
可先由弧长计算出半径,再计算面积.【详解】设扇形半径为,则,,.故选:A.【点睛】本题考查扇形面积公式,考查扇形弧长公式,掌握扇形的弧长和面积公式是解题基础.4、D【解析】
容易看出,四边形是平行四边形,从而得出.【详解】根据图形看出,四边形是平行四边形故选:【点睛】本题考查相等向量概念辨析,属于基础题.5、B【解析】
由是等差数列,求得,则可求【详解】∵是等差数列,设,∴故故选:B【点睛】本题考查等差数列的通项公式,考查计算能力,是基础题6、A【解析】
连接,证得,结合向量减法运算,求得.【详解】连接,由于是半圆弧的两个三等分点,所以,所以是等边三角形,所以,所以四边形是菱形,所以,所以.故选:A【点睛】本小题主要考查圆的几何性质,考查向量相等的概念,考查向量减法的运算,属于基础题.7、B【解析】
算出基本事件的总数和随机事件中基本事件的个数,利用古典概型的概率的计算公式可求概率.【详解】设为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数,恰好抽到2幅不同种类包含的基本事件个数,则恰好抽到2幅不同种类的概率为.故选B.【点睛】计算出所有的基本事件的总数及随机事件中含有的基本事件的个数,利用古典概型的概率计算即可.计数时应该利用排列组合的方法.8、C【解析】
由得,再由向量的加法得,最后把代入,求得答案.【详解】因为,故选C.【点睛】本题考查向量的加法和数乘运算的几何意义,考查平面向量基本定理在图形中的应用.9、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.10、D【解析】
先根据题中条件,结合正弦定理得到,求出角,同理求出角,进而可判断出结果.【详解】因为,由正弦定理可得,所以,即,因为角为三角形内角,所以;同理,;所以,因此,是等腰直角三角形.故选D【点睛】本题主要考查判定三角形的形状问题,熟记正弦定理即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R,,所以该球形容器的表面积的最小值为.【点睛】将表面积最小的球形容器,看成其中两个正四棱柱的外接球,求其半径,进而求体积.12、3【解析】函数在上为减函数,故最大值为.13、【解析】记甲、乙两人相邻而站为事件A甲、乙、丙三人随机地站成一排的所有排法有=6,则甲、乙两人相邻而站的战法有=4种站法∴=14、1【解析】
根据题意可分析第一组、第二组、第三组、…中的数的个数及最后的数,从中寻找规律使问题得到解决.【详解】根据题意:第一组有2=1×2个数,最后一个数为4;第二组有4=2×2个数,最后一个数为12,即2×(2+4);第三组有6=2×3个数,最后一个数为24,即2×(2+4+6);…∴第n组有2n个数,其中最后一个数为2×(2+4+…+2n)=4(1+2+3+…+n)=2n(n+1).∴当n=31时,第31组的最后一个数为2×31×1=1984,∴当n=1时,第1组的最后一个数为2×1×33=2112,∴2018位于第1组.故答案为1.【点睛】本题考查观察与分析问题的能力,考查归纳法的应用,从有限项得到一般规律是解决问题的关键点,属于中档题.15、【解析】所求的等比中项为:.16、【解析】
首先要用诱导公式得到角的正弦值,根据角是第二象限的角得到角的余弦值,再用诱导公式即可得到结果.【详解】解:,又是第二象限角故,故答案为.【点睛】本题考查同角的三角函数的关系,本题解题的关键是诱导公式的应用,熟练应用诱导公式是解决三角函数问题的必备技能,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由二倍角公式,结合题意,可直接求出结果;(2)先由题意求出,,根据,由两角差的正弦公式,即可求出结果.【详解】(1)因为,所以;(2)因为为锐角,所以,,又,所以,,所以.【点睛】本题主要考查三角恒等变换给值求值的问题,熟记二倍角公式,以及两角差的正弦公式即可,属于常考题型.18、(1),;(2).【解析】分析:(1)利用的关系,求解;倒序相加求。(2)先用错位相减求,分离参数,使得对于一切的恒成立,转化为求的最值。详解:(1)时满足上式,故∵=1∴∵①∴②∴①+②,得.(2)∵,∴∴①,②①-②得即要使得不等式恒成立,恒成立对于一切的恒成立,即,令,则当且仅当时等号成立,故所以为所求.点睛:1、,一定要注意,当时要验证是否满足数列。2、等比乘等差结构的数列用错位相减。3、数列中的恒成立问题与函数中的恒成立问题解法一致。19、(1)见解析;(2)见解析【解析】
(1)取的中点,连接,由平面平面,得平面,再证即可证明(2)证明平面,再根据面面垂直的判定定理从而进行证明.【详解】(1)取的中点,连接,因为,且,.所以,.又因为平面平面,所以平面,又平面,所以又因为平面,平面,所以平面.(2)连接,由(1)知,又,,所以四边形是平行四边形,所以.又是正三角形,为的中点,∴,因为平面平面,所以平面,所以平面.又平面,所以.因为,,所以平面.因为平面,所以平面平面.【点睛】本题考查了线面平行的证明,线面垂直,面面垂直的判定定理,考查空间想象和推理能力,熟记定理是关键,是一道中档题.20、(1);(2).【解析】
(1)计算出的坐标,然后利用共线向量的坐标表示列出等式求出实数的值;(2)求出和,从而可得出在方向上的投影为.【详解】(1),,,,,,解得;(2),,在方向上的投影.【点睛】本题考查平面向量的坐标运算,考查共线向量的坐标运算以及投影的计算,在解题时要弄清楚这些知识点的定义以及坐标运算律,考查计算能力,属于中等题.21、(1)(2)【解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 申请学生资助申请书
- 大学生创业项目可以贷款吗西藏
- 四年级数学三位数除以两位数水平自测习题带答案
- 阅读力孩子的翅膀
- 创新教学实践
- 餐饮礼仪与服务提升
- 压力与应对模板
- 给物业装修申请书
- 法律职业客观题二-2021年国家法律职业资格考试《客观题卷二》真题汇编
- 初级银行管理-银行专业初级《银行管理》预测试卷1
- 2025年蒙盐集团招聘笔试参考题库含答案解析
- 护理三基三严习题+参考答案
- 椎间孔镜的手术配合
- 2025门诊护理工作计划
- 员工互评表(含指标)
- 电气领域知识培训课件
- 山东省部分学校2024-2025学年高一上学期12月选科指导联合测试地理试题( 含答案)
- focus-pdca改善案例-提高护士对糖尿病患者胰岛素注射部位正确轮换执行率
- 八年级物理下册全册课课练【全册每课齐全】
- 美国电话区号一览表
- 针对老年人的交通安全宣传
评论
0/150
提交评论