2025届上海市南模中学数学高一下期末学业水平测试模拟试题含解析_第1页
2025届上海市南模中学数学高一下期末学业水平测试模拟试题含解析_第2页
2025届上海市南模中学数学高一下期末学业水平测试模拟试题含解析_第3页
2025届上海市南模中学数学高一下期末学业水平测试模拟试题含解析_第4页
2025届上海市南模中学数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市南模中学数学高一下期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列的公比为正数,且,则()A. B. C. D.2.若等差数列的前10项之和大于其前21项之和,则的值()A.大于0 B.等于0 C.小于0 D.不能确定3.己知向量,.若,则m的值为()A. B.4 C.- D.-44.若,则的坐标是()A. B. C. D.5.设且,则下列不等式成立的是()A. B. C. D.6.若,则函数的单调递增区间为()A. B. C. D.7.下列极限为1的是()A.(个9) B.C. D.8.设实数满足约束条件,则的最大值为()A. B.4 C.5 D.9.下列选项正确的是()A.若,则B.若,则C.若,则D.若,则10.在中,角A,B,C所对的边分别为a,b,c,若,,则是()A.纯角三角形 B.等边三角形C.直角三角形 D.等腰直角三角形二、填空题:本大题共6小题,每小题5分,共30分。11.某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表所示(单位:人).参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230若从该班随机选l名同学,则该同学至少参加上述一个社团的概率为__________.12.某校选修“营养与卫生”课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法从这70名学生中抽取一个样本,已知在高二年级的学生中抽取了8名,则在该校高一年级的学生中应抽取的人数为________.13.设的内角,,所对的边分别为,,.已知,,如果解此三角形有且只有两个解,则的取值范围是_____.14.已知数列满足:其中,若,则的取值范围是______.15.读程序,完成下列题目:程序如图:(1)若执行程序时,没有执行语句,则输入的的范围是_______;(2)若执行结果,输入的的值可能是___.16.已知在中,角的大小依次成等差数列,最大边和最小边的长是方程的两实根,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值.18.如图所示,某住宅小区的平面图是圆心角为120°的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路,已知某人从沿走到用了10分钟,从沿走到用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径的长.19.已知中,角的对边分别为.已知,.(Ⅰ)求角的大小;(Ⅱ)设点满足,求线段长度的取值范围.20.已知数列满足=(1)若求数列的通项公式;(2)若==对一切恒成立求实数取值范围.21.在平面直角坐标系中,已知射线与射线,过点作直线l分别交两射线于点A、B(不同于原点O).(1)当取得最小值时,直线l的方程;(2)求的最小值;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,故选D.2、C【解析】

根据条件得到不等式,化简后可判断的情况.【详解】据题意:,则,所以,即,则:,故选C.【点睛】本题考查等差数列前项和的应用,难度较易.等差数列前项和之间的关系可以转化为与的关系.3、B【解析】

根据两个向量垂直的坐标表示列方程,解方程求得的值.【详解】依题意,由于,所以,解得.故选B.【点睛】本小题主要考查两个向量垂直的坐标表示,考查向量减法的坐标运算,属于基础题.4、C【解析】

,.故选C.5、A【解析】项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误;项,当,时,,即不等式不成立,故项错误.综上所述,故选.6、B【解析】

由题意利用两角和的余弦公式化简函数的解析式,再利用余弦函数的单调性,得出结论.【详解】函数,令,求得,可得函数的增区间为,,.再根据,,可得增区间为,,故选.【点睛】本题主要考查两角和的余弦公式的应用,考查余弦函数的单调性,属于基础题.7、A【解析】

利用极限的运算逐项求解判断即可【详解】对于A项,极限为1,对于B项,极限不存在,对于C项,极限为1.对于D项,,故选:A.【点睛】本题考查的极限的运算及性质,准确计算是关键,是基础题8、A【解析】

作出可行域,作出目标函数对应的直线,平移该直线可得最优解.【详解】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当直线过点时,得最大值为,故选:A.【点睛】本题考查简单的线性规划,解题关键是作出可行域和目标函数对应的直线.9、B【解析】

通过逐一判断ABCD选项,得到答案.【详解】对于A选项,若,代入,,故A错误;对于C选项,等价于,故C错误;对于D选项,若,则,故D错误,所以答案选B.【点睛】本题主要考查不等式的相关性质,难度不大.10、B【解析】

利用正弦定理结合条件,得到,再由,结合余弦定理,得到,从而得到答案.【详解】在中,由正弦定理得,而,所以得到,即,为的内角,所以,因为,所以,由余弦定理得.为的内角,所以,所以,为等边三角形.故选:B.【点睛】本题考查正弦定理和余弦定理判断三角形形状,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用公式得到答案.【详解】至少参加上述一个社团的人数为15故答案为【点睛】本题考查了概率的计算,属于简单题.12、6【解析】

利用分层抽样的定义求解.【详解】设从高一年级的学生中抽取x名,由分层抽样的知识可知,解得x=6.故答案为6.【点睛】本题主要考查分层抽样,意在考查学生对该知识的掌握水平和分析推理能力.13、【解析】

由余弦定理写出c与x的等式,再由有两个正解,解出x的取值范围【详解】根据余弦定理:代入数据并整理有,有且仅有两个解,记为则:【点睛】本题主要考查余弦定理以及韦达定理,属于中档题.14、【解析】

令,逐步计算,即可得到本题答案.【详解】1.当时,因为,所以;2.当时,因为,所以;3.当时,①若,即,有,1)当,即,,由题,有,得,综上,无解;2)当,即,,由题,有,得,综上,无解;②若,,,1)当,即,,由题,有,得,综上,得;2)当,即,,由题,有,得,综上,得.所以,.故答案为:.【点睛】本题主要考查由数列递推公式确定参数取值范围的问题,分类讨论思想是解决本题的关键.15、2【解析】

(1)不执行语句,说明不满足条件,,从而得;(2)执行程序,有当时,,只有,.【详解】(1)不执行语句,说明不满足条件,,故有.(2)当时,,只有,.故答案为:(1)(2);【点睛】本题主要考察程序语言,考查对简单程序语言的阅读理解,属于基础题.16、【解析】

本题首先可根据角的大小依次成等差数列计算出,然后根据最大边和最小边的长是方程的两实根得到以及,最后根据余弦定理即可得出结果.【详解】因为角成等差数列,所以,又因为,所以.设方程的两根分别为、,则,由余弦定理可知:,所以.【点睛】本题考查根据余弦定理求三角形边长,考查等差中项以及韦达定理的应用,余弦定理公式为,体现了综合性,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值为2,最小值为【解析】

(1)先将函数化简为,根据公式求最小正周期.

(2)由,则,可求出函数的最值.【详解】(1)所以的最小正周期为:.(2)由(1)有,则则当,即时,有最小值.当即,时,有最大值2.所以在区间上的最大值为2,最小值为.【点睛】本题考查三角函数化简、求最小正周期和函数在闭区间上的最值,属于中档题.18、【解析】

连接,由题意,得米,米,,在△中,由余弦定理可得答案.【详解】设该扇形的半径为米,连接,如图所示:由题意,得米,米,,在△中,由余弦定理得,即,解得米.答:该扇形的半径的长为米.【点睛】本题考查了利用余弦定理解三角形,将问题转化为在三角形中求解是解题关键,属于基础题.19、(Ⅰ)(Ⅱ)【解析】

(I)利用数量积的定义和三角形面积公式可求得,从而得角;(II)由得,平方后可求得,即中线长,结合可得最小值,从而得取值范围.【详解】(Ⅰ)因为,所以因为,所以得以两式相除得所以(Ⅱ)因为,所以因为,所以所以所以.当且仅当时取得等号所以线段长度的取值范围时.【点睛】本题考查平面向量的数量积,考查平面向量的线性运算、三角形面积公式,解题关键是把中线向量表示为,这样把线段长度(向量模)转化为向量的数量积.20、(1)=;(2).【解析】

(1)由,结合可得数列为等差数列,进而可得所求;(2)由得,利用累加法并结合等比数列的前项和公式求出,化简得,再利用数列的单调性求出的最大值即可得出结论.【详解】(1)由,可得=.∴数列是首项为1,公差为4的等差数列,∴.(2)由及,得=,∴,∴,又满足上式,∴.∵对一切恒成立,即对一切恒成立,∴对一切恒成立.又数列为单调递减数列,∴,∴,∴实数取值范围为.【点睛】本题主要考查等差数列与等比数列的通项公式与前项和公式,考查了累加法与恒成立问题、逻辑推理能力与计算能力,解决数列中的恒成立问题时,也常利用分离参数的方法,转化为求最值的问题求解.21、(1);(2)6.【解析】

(1)设,,利用三点共线可得的关系,计算出后由基本不等式求得最小值.从而得直线方程;(2)由(1)中所设坐标计算出,利用基本不等式由(1)中所得关系可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论