河南省鹤壁市高级中学2025届高一下数学期末质量跟踪监视试题含解析_第1页
河南省鹤壁市高级中学2025届高一下数学期末质量跟踪监视试题含解析_第2页
河南省鹤壁市高级中学2025届高一下数学期末质量跟踪监视试题含解析_第3页
河南省鹤壁市高级中学2025届高一下数学期末质量跟踪监视试题含解析_第4页
河南省鹤壁市高级中学2025届高一下数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省鹤壁市高级中学2025届高一下数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集是()A. B. C. D.2.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm3.正四棱柱的高为3cm,体对角线长为cm,则正四棱柱的侧面积为()A.10 B.24 C.36 D.404.在中,角,,的对边分别为,,,若,,,则()A. B. C. D.5.已知,所在平面内一点P满足,则()A. B. C. D.6.在中秋的促销活动中,某商场对9月14日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知12时到14时的销售额为万元,则10时到11时的销售额为()A.万元 B.万元 C.万元 D.万元7.执行如图所示的程序框图,令,若,则实数a的取值范围是A. B.C. D.8.若三个实数a,b,c成等比数列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.49.已知向量,,则()A.-1 B.-2 C.1 D.010.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知都是锐角,,则=_____12.设O点在内部,且有,则的面积与的面积的比为.13.在平面直角坐标系中,角的顶点在原点,始边与轴的正半轴重合,终边过点,则______14.对于任意x>0,不等式3x2-2mx+12>015.已知一组样本数据,且,平均数,则该组数据的标准差为__________.16.某工厂生产三种不同型号的产品,产品数量之比依次为,现用分层抽样方法抽出一个容量为的样本,样本中种型号产品有16件,那么此样本的容量=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥中,是正三角形,四边形ABCD是矩形,且平面平面.(1)若点E是PC的中点,求证:平面BDE;(2)若点F在线段PA上,且,当三棱锥的体积为时,求实数的值.18.已知为坐标原点,,,若.(Ⅰ)求函数的单调递减区间;(Ⅱ)当时,若方程有根,求的取值范围.19.已知,.(1)求及的值;(2)求的值.20.如图,在平面直角坐标系中,已知圆:,点,过点的直线与圆交于不同的两点(不在y轴上).(1)若直线的斜率为3,求的长度;(2)设直线的斜率分别为,求证:为定值,并求出该定值;(3)设的中点为,是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.21.已知数列的前项和.(1)求数列通项公式;(2)令,求数列的前n项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

分解因式,即可求得.【详解】进行分解因式可得:,故不等式解集为:故选:A.【点睛】本题考查一元二次不等式的求解,属基础知识题.2、C【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).3、B【解析】

设正四棱柱,设底面边长为,由正四棱柱体对角线的平方等于从同一顶点出发的三条棱的平方和,可得关于的方程.【详解】如图,正四棱柱,设底面边长为,则,解得:,所以正四棱柱的侧面积.【点睛】本题考查正棱柱的概念,即底面为正方形且侧棱垂直于底面的几何体,考查几何体的侧面积计算.4、A【解析】

由余弦定理可直接求出边的长.【详解】由余弦定理可得,,所以.故选A.【点睛】本题考查了余弦定理的运用,考查了计算能力,属于基础题.5、D【解析】

由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.6、C【解析】分析:先根据12时到14时的销售额为万元求出总的销售额,再求10时到11时的销售额.详解:设总的销售额为x,则.10时到11时的销售额的频率为1-0.1-0.4-0.25-0.1=0.15.所以10时到11时的销售额为.故答案为C.点睛:(1)本题主要考查频率分布直方图求概率、频数和总数,意在考查学生对这些基础知识的掌握水平.(2)在频率分布直方图中,所有小矩形的面积和为1,频率=.7、D【解析】该程序的功能是计算并输出分段函数.当时,,解得;当时,,解得;当时,,无解.综上,,则实数a的取值范围是.故选D.8、C【解析】

由实数a,b,c成等比数列,得b2【详解】由实数a,b,c成等比数列,得b2所以b=±2.故选C.【点睛】本题主要考查了等比数列的基本性质,属于基础题.9、C【解析】

根据向量数量积的坐标运算,得到答案.【详解】向量,,所以.故选:C.【点睛】本题考查向量数量积的坐标运算,属于简单题.10、D【解析】

由题意可得直线的斜率和截距,由斜截式可得答案.【详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【点睛】本题考查直线的斜截式方程,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知求出,再由两角差的正弦公式计算.【详解】∵都是锐角,∴,又,∴,,∴.故答案为.【点睛】本题考查两角和与差的正弦公式.考查同角间的三角函数关系.解题关键是角的变换,即.这在三角函数恒等变换中很重要,即解题时要观察“已知角”和“未知角”的关系,根据这个关系选用相应的公式计算.12、3【解析】

分别取AC、BC的中点D、E,

,

,即,

是DE的一个三等分点,

,

故答案为:3.13、-1【解析】

根据三角函数的定义求得,再代入的展开式进行求值.【详解】角终边过点,终边在第三象限,根据三角函数的定义知:,【点睛】考查三角函数的定义及三角恒等变换,在变换过程中要注意符号的正负.14、(-∞,6)【解析】

先参变分离转化为对应函数最值问题,再通过求函数最值得结果.【详解】因为3x2-2mx+12>0,所以m<3x2+【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15、11【解析】

根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案.【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:11.【点睛】本题主要考查平均数、方差与标准差,属于基础题.样本方差,标准差.16、1.【解析】

解:A种型号产品所占的比例为2/(2+3+5)=2/10,16÷2/10=1,故样本容量n=1,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)证明见解析;(Ⅱ)【解析】试题分析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE;(Ⅱ)由平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,进一步利用求得最后利用平行线分线段成比例求出λ的值试题解析:(Ⅰ)连接AC,设AC∩BD=Q,又点E是PC的中点,则在△PAC中,中位线EQ∥PA,又EQ⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE(Ⅱ)解:依据题意可得:PA=AB=PB=2,取AB中点O,所以PO⊥AB,且又平面PAB⊥平面ABCD,则PO⊥平面ABCD;作FM∥PO于AB上一点M,则FM⊥平面ABCD,因为四边形ABCD是矩形,所以BC⊥平面PAB,则△PBC为直角三角形,所以,则直角三角形△ABD的面积为,由FM∥PO得:考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积18、(1)的单调减区间为;(2).【解析】试题分析:(1)根据向量点积的坐标运算得到,根据正弦函数的单调性得到单调递减区间;(2)将式子变形为.有解,转化为值域问题.解析:(Ⅰ)∵,,∴其单调递减区间满足,,所以的单调减区间为.(Ⅱ)∵当时,方程有根,∴.∵,∴,∴,∴,∴.点睛:这个题目考查了,向量点积运算,三角函数的化一公式,,正弦函数的单调性问题,三角函数的值域和图像问题.第二问还要用到了方程的零点的问题.一般函数的零点和方程的根,图象的交点是同一个问题,可以互相转化.19、(1),;(2).【解析】

(1)由已知,,利用,可得的值,再利用及二倍角公式,分别求得及的值;(2)利用倍角公式、诱导公式,可得原式的值为.【详解】(1)因为,,所以,所以,.(2)原式【点睛】若三个中,只要知道其中一个,则另外两个都可求出,即知一求二.20、(1);(2)见解析;(3)见解析【解析】

(1)求出圆心O到直线的距离,已知半径通过勾股定理即可算出弦长的一半,即可算出弦长。(2)设,直线的方程为,联立圆的方程通过韦达定理化简即可。(3)设点,根据,得,表示出,的关系,再联立直线和圆的方程得到,与k的关系,代入可解出k,最后再通过有两个交点判断即可求出k值。【详解】(1)由直线的斜率为3,可得直线的方程为所以圆心到直线的距离为所以(2)直线的方程为,代入圆可得方程设,则所以为定值,定值为0(3)设点,由,可得:,即,化得:由(*)及直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论