




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省文山西畴县二中2025届高一下数学期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在空间直角坐标系中,点P(3,4,5)关于平面的对称点的坐标为()A.(−3,4,5) B.(−3,−4,5)C.(3,−4,−5) D.(−3,4,−5)2.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.3.已知函数的图像如图所示,关于有以下5个结论:(1);(2),;(3)将图像上所有点向右平移个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有;(5)对于任意实数x都有;其中所有正确结论的编号是()A.(1)(2)(3) B.(1)(2)(4)(5) C.(1)(2)(4) D.(1)(3)(4)(5)4.若函数f(x)=loga(x2–ax+2)在区间(0,1]上单调递减,则实数a的取值范围是()A.[2,3) B.(2,3) C.[2,+∞) D.(2,+∞)5.若直线与平面相交,则()A.平面内存在无数条直线与直线异面B.平面内存在唯一的一条直线与直线平行C.平面内存在唯一的一条直线与直线垂直D.平面内的直线与直线都相交6.已知向量,,若,共线,则实数()A. B. C. D.67.在中,已知,且满足,则的面积为()A.1 B.2 C. D.8.已知三个内角、、的对边分别是,若,则等于()A. B. C. D.9.已知向量,,若对任意的,恒成立,则角的取值范围是()A. B.C. D.10.在中,角所对的边分别为,若,则此三角形()A.无解 B.有一解 C.有两解 D.解的个数不确定二、填空题:本大题共6小题,每小题5分,共30分。11.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.12.已知cosθ,θ∈(π,2π),则sinθ=_____,tan_____.13.若过点作圆的切线,则直线的方程为_______________.14.函数y=sin2x+2sin2x的最小正周期T为_______.15.三棱锥的各顶点都在球的球面上,,平面,,,球的表面积为,则的表面积为_______.16.已知方程的两根分别为、、且,且__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的前项和,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和.18.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.19.从甲、乙两班某项测试成绩中各随机抽取5名同学的成绩,得到如图所示的茎叶图.已知甲班成绩数据的中位数为13,乙班成绩数据的平均数为16.(1)求x,y的值;(2)试估计甲、乙两班在该项测试中整体水平的高低.(注:方差,其中为的平均数)20.在中,内角所对的边分别为.已知,.(Ⅰ)求的值;(Ⅱ)求的值.21.已知向量,的夹角为,且,.(1)求;(2)求.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,即可得解.【详解】关于平面对称的点的横坐标互为相反数,纵坐标和竖坐标相等,所以点P(3,4,5)关于平面的对称点的坐标为(−3,4,5).故选A.【点睛】本题主要考查了空间点的对称点的坐标求法,属于基础题.2、D【解析】
求出样本数据的中心,代入选项可得D是正确的.【详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【点睛】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.3、B【解析】
由图象可观察出的最值和周期,从而求出,将图像上所有的点向右平移个单位得到的函数,可判断(3)的正误,利用,可判断(4)(5)的正误.【详解】由图可知:,所以,,所以,即因为,所以,所以,故(1)(2)正确将图像上所有的点向右平移个单位得到的函数为此函数是奇函数,故(3)错误因为所以关于直线对称,即有故(4)正确因为所以关于点对称,即有故(5)正确综上可知:正确的有(1)(2)(4)(5)故选:B【点睛】本题考查的是三角函数的图象及其性质,属于中档题.4、A【解析】
函数为函数与的复合函数,复合函数的单调性是同则增,异则减,讨论,,结合二次函数的单调性,同时还要保证真数恒大于零,由二次函数的图象和性质列不等式即可求得的范围.【详解】∵函数在区间上为单调递减函数,∴时,在上为单调递减函数,且在上恒成立,∴需在上的最小值,且对称轴,∴,当时,在上为单调递增函数,不成立,综上可得的范围是,故选:A.【点睛】本题考查了对数函数的图象和性质,二次函数图象和性质,复合函数的定义域与单调性,不等式恒成立问题的解法,转化化归的思想方法,属于中档题.5、A【解析】
根据空间中直线与平面的位置关系,逐项进行判定,即可求解.【详解】由题意,直线与平面相交,对于A中,平面内与无交点的直线都与直线异面,所以有无数条,正确;对于B中,平面内的直线与要么相交,要么异面,不可能平行,所以,错误;对于C中,平面内有无数条平行直线与直线垂直,所以,错误;对于D中,由A知,D错误.故选A.【点睛】本题主要考查了直线与平面的位置关系的应用,其中解答中熟记直线与平面的位置关系,合理判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6、C【解析】
利用向量平行的性质直接求解.【详解】向量,,共线,,解得实数.故选:.【点睛】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.7、D【解析】
根据正弦定理先进行化简,然后根据余弦定理求出C的大小,结合三角形的面积公式进行计算即可.【详解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面积.故选D.【点睛】本题主要考查三角形面积的计算,结合正弦定理余弦定理进行化简是解决本题的关键,属于基础题.8、D【解析】
根据正弦定理把边化为对角的正弦求解.【详解】【点睛】本题考查正弦定理,边角互换是正弦定理的重要应用,注意增根的排除.9、A【解析】
利用数量积运算可将不等式化简为,根据恒成立条件可得不等式组,利用三角函数知识分别求解两个不等式,取交集得到结果.【详解】当时,恒成立,则当时,即,,解得:,当时,即,,解得:,在时恒成立可得:本题正确选项:【点睛】本题考查三角函数中的恒成立问题的求解,关键是能够根据数量积将恒成立不等式转化为两个三角不等式的求解问题,利用辅助角公式将问题转化为根据正弦型函数的值域求解角的范围的问题.10、C【解析】
利用正弦定理求,与比较的大小,判断B能否取相应的锐角或钝角.【详解】由及正弦定理,得,,B可取锐角;当B为钝角时,,由正弦函数在递减,,可取.故选C.【点睛】本题考查正弦定理,解三角形中何时无解、一解、两解的条件判断,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【点睛】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.12、﹣2.【解析】
由题意利用同角三角函数的基本关系,二倍角公式,求得式子的值.【详解】由,,知,则,.故答案为:,.【点睛】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.13、或【解析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。14、【解析】考点:此题主要考查三角函数的概念、化简、性质,考查运算能力.15、【解析】
根据题意可证得,而,所以球心为的中点.由球的表面积为,即可求出,继而得出的值,求出三棱锥的表面积.【详解】如图所示:∵,平面,∴,又,故球心为的中点.∵球的表面积为,∴,即有.∴,.∴,,,.故的表面积为.故答案为:.【点睛】本题主要考查三棱锥的表面积的求法,球的表面积公式的应用,意在考查学生的直观想象能力和数学运算能力,属于基础题.16、【解析】
由韦达定理和两角和的正切公式可得,进一步缩小角的范围可得,进而可求.【详解】方程两根、,,,,又,,,,,,,结合,,故答案为.【点睛】本题考查两角和与差的正切函数,涉及韦达定理,属中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(1)本题可令求出的值,然后令求出,即可求出数列的通项公式;(2)首先可令,然后根据错位相减法即可求出数列的前项和。【详解】(1)当,,得.当时,,,两式相减,得,化简得,所以数列是首项为、公比为的等比数列,所以。(2)由(1)可知,令,则①,两边同乘以公比,得到②,由①②得:所以。【点睛】本题主要考查了数列通项的求法以及数列前项和的方法,求数列通项常用的方法有:累加法、累乘法、定义法、配凑法等;求数列前项和常用的方法有:错位相减法、裂项相消法、公式法、分组求和法等,属于中等题。18、(1);(2)【解析】
(1)边上的高所在直线方程斜率与边所在直线的方程斜率之积为-1,可求出高所在直线的斜率,代入即可求出高所在直线的方程。(2)设圆的一般方程为,代入即可求得圆的方程。【详解】(1)因为所在直线的斜率为,所以边上的高所在直线的斜率为所以边上的高所在直线的方程为,即(2)设所求圆的方程为因为在所求的圆上,故有所以所求圆的方程为【点睛】(1)求直线方程一般通过直线点斜式方程求解,即知道点和斜率。(2)圆的一般方程为,三个未知数三个点代入即可。19、(1),;(2)乙班的整体水平较高【解析】
(1)由茎叶图数据以及平均数,中位数的定义求解即可;(2)分别计算出甲乙两班的方差,得出,所以乙班的整体水平较高.【详解】(1)由茎叶图知甲班成绩数据依次为9,12,,20,26所以中位数为,得;乙班成绩数据的平均数,得.(2)乙班整体水平较高.理由:由题意及(1)得因为,所以乙班的整体水平较高.【点睛】本题主要考查了利用茎叶图计算平均数,中位数以及方差的应用,属于中档题.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由题意结合正弦定理得到的比例关系,然后利用余弦定理可得的值(Ⅱ)利用二倍角公式首先求得的值,然后利用两角和的正弦公式可得的值.【详解】(Ⅰ)在中,由正弦定理得,又由,得,即.又因为,得到,.由余弦定理可得.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政普法宣传课件
- 部编版历史八年级上册《1五四运动》模板
- 电力工程公司安全管理制度
- 乳腺癌病人放疗后护理
- 老师专用课件大纲
- 2025年中山市租房合同范本
- 2025国内货物销售合同模板
- 互联网教育平台运营策略手册
- 电子政务云计算平台开发与维护策略
- 医疗保健管理与服务质量作业指导书
- 《版式设计》课件-第三章 流动资产
- (二调)武汉市2025届高中毕业生二月调研考试 生物试卷(含标准答案)
- 2024年上海奉贤区招录储备人才笔试真题
- 《copd疾病知识》课件
- 【化学】常见的盐(第2课时)-2024-2025学年九年级化学下册(人教版2024)
- 真需求-打开商业世界的万能钥匙
- 2025山东淄博高新国资本投资限公司选聘国员工11人高频重点提升(共500题)附带答案详解
- 2024年医院中层干部管理办法
- 编外聘人员考试题库
- 2024年考研英语一阅读理解80篇试题及答案
- 【MOOC】中国近现代史纲要-武汉大学 中国大学慕课MOOC答案
评论
0/150
提交评论