北京市19中2025届数学高一下期末达标检测模拟试题含解析_第1页
北京市19中2025届数学高一下期末达标检测模拟试题含解析_第2页
北京市19中2025届数学高一下期末达标检测模拟试题含解析_第3页
北京市19中2025届数学高一下期末达标检测模拟试题含解析_第4页
北京市19中2025届数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市19中2025届数学高一下期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设△ABC的内角A、B、C所对边分别为a、b、c,若a=3,b=,A=,则B=()A. B.或 C. D.或2.下列说法正确的是()A.若,则 B.若,,则C.若,则 D.若,,则3.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.564.下列结论中错误的是()A.若,则 B.函数的最小值为2C.函数的最小值为2 D.若,则函数5.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A. B.C. D.6.已知某数列的前项和(为非零实数),则此数列为()A.等比数列 B.从第二项起成等比数列C.当时为等比数列 D.从第二项起的等比数列或等差数列7.已知点,则向量在方向上的投影为()A. B. C. D.8.函数(且)的图像是下列图像中的()A. B.C. D.9.在△ABC中,sinA:sinB:sinC=4:3:2,则cosA的值是()A. B. C. D.10.已知函数,其中为整数,若在上有两个不相等的零点,则的最大值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某货船在处看灯塔在北偏东方向,它以每小时18海里的速度向正北方向航行,经过40分钟到达处,看到灯塔在北偏东方向,此时货船到灯塔的距离为______海里.12.下列五个正方体图形中,是正方体的一条对角线,点M,N,P分别为其所在棱的中点,求能得出⊥面MNP的图形的序号(写出所有符合要求的图形序号)______13.数列中,,以后各项由公式给出,则等于_____.14.若,则=_________15.若函数的图象过点,则___________.16.若不等式的解集为空集,则实数的能为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.18.(1)若对任意的,总有成立,求常数的值;(2)在数列中,,求通项;(3)在(2)的条件下,设,从数列中依次取出第项,第项,第项,按原来的顺序组成新数列,其中试问是否存在正整数,使得且成立?若存在,求出的值;若不存在,说明理由.19.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.20.已知直线截圆所得的弦长为.直线的方程为.(1)求圆的方程;(2)若直线过定点,点在圆上,且,为线段的中点,求点的轨迹方程.21.在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?(参考公式:,其中,)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由已知利用正弦定理可求的值,利用大边对大角可求为锐角,利用特殊角的三角函数值,即可得解.【详解】由题意知,由正弦定理,可得==,又因为,可得B为锐角,所以.故选A.【点睛】本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.2、D【解析】

利用不等式的性质或举反例的方法来判断各选项中不等式的正误.【详解】对于A选项,若且,则,该选项错误;对于B选项,取,,,,则,均满足,但,B选项错误;对于C选项,取,,则满足,但,C选项错误;对于D选项,由不等式的性质可知该选项正确,故选:D.【点睛】本题考查不等式正误的判断,常用不等式的性质以及举反例的方法来进行验证,考查推理能力,属于基础题.3、C【解析】

利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【详解】设等差数列an公差为则a2+∴本题正确选项:C【点睛】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.4、B【解析】

根据均值不等式成立的条件逐项分析即可.【详解】对于A,由知,,所以,故选项A本身正确;对于B,,但由于在时不可能成立,所以不等式中的“”实际上取不到,故选项B本身错误;对于C,因为,当且仅当,即时,等号成立,故选项C本身正确;对于D,由知,,所以lnx+=-2,故选项D本身正确.故选B.【点睛】本题主要考查了均值不等式及不等式取等号的条件,属于中档题.5、D【解析】试题分析:根据题意,甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20min,在乙地休息10min后,他又以匀速从乙地返回到甲地用了30min,那么可知先是匀速运动,图像为直线,然后再休息,路程不变,那么可知时间持续10min,那么最后还是同样的匀速运动,直线的斜率不变可知选D.考点:函数图像点评:主要是考查了路程与时间的函数图像的运用,属于基础题.6、D【解析】

设数列的前项和为,运用数列的递推式:当时,,当时,,结合等差数列和等比数列的定义和通项公式,即可得到所求结论.【详解】设数列的前项和为,对任意的,(为非零实数).当时,;当时,.若,则,此时,该数列是从第二项起的等差数列;若且,不满足,当时,,此时,该数列是从第二项起的等比数列.综上所述,此数列为从第二项起的等比数列或等差数列.故选:D.【点睛】本题考查数列的递推式的运用,等差数列和等比数列的定义和通项公式,考查分类讨论思想和运算能力,属于中档题.7、A【解析】

,,向量在方向上的投影为,故选A.8、C【解析】

将函数表示为分段函数的形式,由此确定函数图像.【详解】依题意,.由此判断出正确的选项为C.故选C.【点睛】本小题主要考查三角函数图像的识别,考查分段函数解析式的求法,考查同角三角函数的基本关系式,属于基础题.9、A【解析】

由正弦定理可得,再结合余弦定理求解即可.【详解】解:因为在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故选:A.【点睛】本题考查了正弦定理及余弦定理,重点考查了运算能力,属基础题.10、A【解析】

利用一元二次方程根的分布的充要条件得到关于的不等式,再由为整数,可得当取最小时,取最大,从而求得答案.【详解】∵在上有两个不相等的零点,∴∵,∴当取最小时,取最大,∵两个零点的乘积小于1,∴,∵为整数,令时,,满足.故选:A.【点睛】本题考查一元二次函数的零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意利用方位角的定义画出示意图,再利用三角形,解出的长度.【详解】解:由题意画出图形为:因为,,所以,又由于某船以每小时18海里的速度向正北方向航行,经过40分钟航行到,所以(海里).在中,利用正弦定理得:,所以;故答案为:.【点睛】此题考查了学生对于题意的正确理解,还考查了利用正弦定理求解三角形及学生的计算能力,属于基础题.12、①④⑤【解析】为了得到本题答案,必须对5个图形逐一进行判别.对于给定的正方体,l位置固定,截面MNP变动,l与面MNP是否垂直,可从正、反两方面进行判断.在MN、NP、MP三条线中,若有一条不垂直l,则可断定l与面MNP不垂直;若有两条与l都垂直,则可断定l⊥面MNP;若有l的垂面∥面MNP,也可得l⊥面MNP.解法1作正方体ABCD-A1B1C1D1如附图,与题设图形对比讨论.在附图中,三个截面BA1D、EFGHKR和CB1D1都是对角线l(即AC1)的垂面.对比图①,由MN∥BAl,MP∥BD,知面MNP∥面BAlD,故得l⊥面MNP.对比图②,由MN与面CB1D1相交,而过交点且与l垂直的直线都应在面CBlDl内,所以MN不垂直于l,从而l不垂直于面MNP.对比图③,由MP与面BAlD相交,知l不垂直于MN,故l不垂直于面MNP.对比图④,由MN∥BD,MP∥BA.知面MNP∥面BA1D,故l⊥面MNP.对比图⑤,面MNP与面EFGHKR重合,故l⊥面MNP.综合得本题的答案为①④⑤.解法2如果记正方体对角线l所在的对角截面为.各图可讨论如下:在图①中,MN,NP在平面上的射影为同一直线,且与l垂直,故l⊥面MNP.事实上,还可这样考虑:l在上底面的射影是MP的垂线,故l⊥MP;l在左侧面的射影是MN的垂线,故l⊥MN,从而l⊥面MNP.在图②中,由MP⊥面,可证明MN在平面上的射影不是l的垂线,故l不垂直于MN.从而l不垂直于面MNP.在图③中,点M在上的射影是l的中点,点P在上的射影是上底面的内点,知MP在上的射影不是l的垂线,得l不垂直于面MNP.在图④中,平面垂直平分线段MN,故l⊥MN.又l在左侧面的射影(即侧面正方形的一条对角线)与MP垂直,从而l⊥MP,故l⊥面MNP.在图⑤中,点N在平面上的射影是对角线l的中点,点M、P在平面上的射影分别是上、下底面对角线的4分点,三个射影同在一条直线上,且l与这一直线垂直.从而l⊥面MNP.至此,得①④⑤为本题答案.13、【解析】

可以利用前项的积与前项的积的关系,分别求得第三项和第五项,即可求解,得到答案.【详解】由题意知,数列中,,且,则当时,;当时,,则,当时,;当时,,则,所以.【点睛】本题主要考查了数列的递推关系式的应用,其中解答中熟练的应用递推关系式是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】

∵,∴∴=1×[+]=1.故答案为:1.15、【解析】

由过点,求得a,代入,令,即可得到本题答案【详解】因为的图象过点,所以,所以,故.故答案为:-5【点睛】本题主要考查函数的解析式及利用解析式求值.16、【解析】

根据分式不等式,移项、通分并等价化简,可得一元二次不等式.结合二次函数恒成立条件,即可求得的值.【详解】将不等式化简可得即的解集为空集所以对于任意都恒成立将不等式等价化为即恒成立由二次函数性质可知化简不等式可得解得故答案为:【点睛】本题考查了分式不等式的解法,将不等式等价化为一元二次不等式,结合二次函数性质解决恒成立问题,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期为.对称中心坐标为;(2)-1【解析】

(1)由题意两未知数列两方程即可求出、的值,再进行三角变换,可得的解析式,再利用正弦函数的周期公式、图象的对称性,即可得出结论.(2)先由条件求得的值,可得的值.【详解】(1)由,得:,解得:,,,即函数的最小正周期为.由得:函数的对称中心坐标为;(2)由题意得:,即,或,则或,由知:,.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,以及三角函数求值.18、(1)(2)(3)存在,,或【解析】

由题设得恒成立,所以,由和知,,且,由此能推导出假设存在正整数m,r满足题设,由,,又得,于是,由此能推导出存在正整数m,r满足题设,,或,.【详解】由题设得,即恒成立,所以,由题设又由得,,且,即是首项为1,公比为2的等比数列,所以即为所求.假设存在正整数m,r满足题设,由知,显然,又得,,即是以为首项,为公比的等比数列.于是,由得,m,,所以或15,当时,,;当时,,;综上,存在正整数m,r满足题设,,或,【点睛】本题主要考查了数列中参数的求法、等差数列的通项公式和以极限为载体考查数列性质的综合运用,属于难题.19、(Ⅰ)(Ⅱ)().【解析】试题分析:(Ⅰ)运用两角和的正弦公式对f(x)化简整理,由周期公式求ω的值;(Ⅱ)根据函数y=sinx的单调递增区间对应求解即可.试题解析:(Ⅰ)因为,所以的最小正周期.依题意,,解得.(Ⅱ)由(Ⅰ)知.函数的单调递增区间为().由,得.所以的单调递增区间为().【考点】两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2.利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,不属于的,可先化至同一单调区间内.若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较,与1比较等)求解.20、(1);(2).【解析】

(1)利用点到直线的距离公式得到圆心到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论