四川省金堂中学2024年高一数学第二学期期末综合测试试题含解析_第1页
四川省金堂中学2024年高一数学第二学期期末综合测试试题含解析_第2页
四川省金堂中学2024年高一数学第二学期期末综合测试试题含解析_第3页
四川省金堂中学2024年高一数学第二学期期末综合测试试题含解析_第4页
四川省金堂中学2024年高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省金堂中学2024年高一数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.方程的解所在区间是()A. B.C. D.2.已知是圆上的三点,()A. B. C. D.3.若直线与圆相切,则的值为A.1 B. C. D.4.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.125.已知是的边上的中点,若向量,,则向量等于()A. B. C. D.6.若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个 B.2个 C.3个 D.4个7.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为()A.48 B.64 C.120 D.808.的值等于()A. B.- C. D.-9.正方体中,异面直线与BC所成角的大小为()A. B. C. D.10.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,为上的一点,且,是的中点,过点的直线,是直线上的动点,,则_________.12.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.13.已知数列为等比数列,,,则数列的公比为__________.14.下边程序执行后输出的结果是().15.已知等差数列的前n项和为,若,,,则________16.函数f(x)=2cos(x)﹣1的对称轴为_____,最小值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为,满足(1)求的值;(2)若,求b的取值范围.18.已知向量,,且,.(1)求函数和的解析式;(2)求函数的递增区间;(3)若函数的最小值为,求λ值.19.已知,,函数.(1)求在区间上的最大值和最小值;(2)若函数在区间上是单调递增函数,求正数的取值范围.20.解关于x的不等式21.等差数列中,.(1)求数列的通项公式;(2)设,求数列的前n项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

令,则,所以零点在区间.方程的解所在区间是,故选D.2、C【解析】

先由等式,得出,并计算出,以及与的夹角为,然后利用平面向量数量积的定义可计算出的值.【详解】由于是圆上的三点,,则,,故选C.【点睛】本题考查平面向量的数量积的计算,解题的关键就是要确定向量的模和夹角,考查计算能力,属于中等题.3、D【解析】圆的圆心坐标为,半径为1,∵直线与圆相切,∴圆心到直线的距离,即,解得,故选D.4、C【解析】

由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【点睛】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.5、C【解析】

根据向量加法的平行四边形法则,以及平行四边形的性质可得,,解出向量.【详解】根据平行四边形法则以及平行四边形的性质,有.故选.【点睛】本题考查向量加法的平行四边形法则以及平行四边形的性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、C【解析】

由已知可得an﹣an﹣1=2,或an=2an﹣1,结合等差数列和等比数列的定义,可得答案.【详解】∵数列{an}对任意n≥2(n∈N)满足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差为2的等差数列,正确;②{an}可以是公比为2的等比数列,正确;③若{an}既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,当数列为:1,3,6,8,16……得{an}既不是等差也不是等比数列,故④正确;故选C.【点睛】本题以命题的真假判断与应用为载体,考查了等差,等比数列的相关内容,属于中档题.7、D【解析】

先还原几何体,再根据锥体侧面积公式求结果.【详解】几何体为一个正四棱锥,底面为边长为8的正方体,侧面为等腰三角形,底边上的高为5,因此四棱锥的侧面积为,选D.【点睛】解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.8、C【解析】

利用诱导公式把化简成.【详解】【点睛】本题考查诱导公式的应用,即把任意角的三角函数转化成锐角三角函数,考查基本运算求解能力.9、D【解析】

利用异面直线与BC所成角的的定义,平移直线,即可得答案.【详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.10、A【解析】

设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

用表示出,由对应相等即可得出.【详解】因为,所以解得得.【点睛】本题主要考查了平面向量的基本定理,以及向量的三角形法则,平面上任意不共线的一组向量可以作为一组基底.12、【解析】

设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.13、【解析】

设等比数列的公比为,由可求出的值.【详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【点睛】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.14、15【解析】试题分析:程序执行中的数据变化如下:,输出考点:程序语句15、1【解析】

由题意首先求得数列的公差,然后结合通项公式确定m的值即可.【详解】根据题意,设等差数列公差为d,则,又由,,则,,则,解可得;故答案为1.【点睛】本题考查等差数列的性质,关键是掌握等差数列的通项公式,属于中等题.16、﹣3【解析】

利用余弦函数的图象的对称性,余弦函数的最值,求得结论.【详解】解:对于函数,令,求得,根据余弦函数的值域可得函数的最小值为,故答案为:;.【点睛】本题主要考查余弦函数的图象的对称性,余弦函数的最值,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)代入条件化简得,再由同角三角函数基本关系求出;(2)利用余弦定理、,把表示成关于的二次函数.【详解】(1),,即,,,又,解得:.(2),可得,由余弦定理可得:,,所以b的取值范围为.【点睛】对于运动变化问题,常用函数与方程的思想进行研究,所以自然而然想到构造以是关于或的函数.18、(1),(2)递增区间为,(3)【解析】

(1)根据向量的数量积坐标运算,以及模长的求解公式,即可求得两个函数的解析式;(2)由(1)可得,整理化简后,将其转化为余弦型三角函数,再求单调区间即可;(3)求得的解析式,用换元法,将函数转化为二次函数,讨论二次函数的最小值,从而求得参数的值.【详解】(1),.(2)令,得的递增区间为,.(3)∵,∴..当时,时,取最小值为-1,这与题设矛盾.当时,时,取最小值,因此,,解得.当时,时,取最小值,由,解得,与题设矛盾.综上所述,.【点睛】本题主要考查余弦型三角函数的单调区间的求解,含的二次型函数的最值问题,涉及向量数量积的运算,模长的求解,以及二次函数动轴定区间问题,属综合基础题.19、(1)(2)【解析】

(1)利用向量的数量积化简即可得,再根据,求出的范围结合图像即可解决.(2)根据(1)求出,再根据正弦函数的单调性求出的单调区间即可.【详解】解:(1)因为所以,所以,所以(2)解法一:令得因为函数在上是单调递增函数,所以存在,使得,所以有因为,所以所以,又因为,得所以从而有所以,所以解法二:由,得因为所以所以解得又所以【点睛】本题主要考查了正弦函数在给定区间是的最值以及根据根据函数的单调性求参数.属于中等题,解决本题的关键是记住正弦函数的单调性、最值等.20、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论