四川省宜宾四中2024届数学高一下期末统考模拟试题含解析_第1页
四川省宜宾四中2024届数学高一下期末统考模拟试题含解析_第2页
四川省宜宾四中2024届数学高一下期末统考模拟试题含解析_第3页
四川省宜宾四中2024届数学高一下期末统考模拟试题含解析_第4页
四川省宜宾四中2024届数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省宜宾四中2024届数学高一下期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角,,所对的边为,,,且为锐角,若,,,则()A. B. C. D.2.如图,在长方体中,M,N分别是棱BB1,B1C1的中点,若∠CMN=90°,则异面直线AD1和DM所成角为()A.30° B.45°C.60° D.90°3.用3种不同颜色给2个矩形随机涂色,每个矩形涂且只涂种颜色,则2个矩形颜色不同的概率为()A.13 B.12 C.24.若偶函数在上是增函数,则()A. B.C. D.不能确定5.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.6.同时抛掷两个骰子,则向上的点数之和是的概率是()A. B. C. D.7.已知某圆柱的底面周长为12,高为2,矩形是该圆柱的轴截面,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C.3 D.28.如图,这是某校高一年级一名学生七次月考数学成绩(满分100分)的茎叶图去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.69.若向量,且,则等于()A. B. C. D.10.某学校从编号依次为01,02,…,72的72个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为12,21,则该样本中来自第四组的学生的编号为()A.30 B.31 C.32 D.33二、填空题:本大题共6小题,每小题5分,共30分。11.的内角的对边分别为,若,,,则的面积为__________.12.已知直线l过定点,且与两坐标轴围成的三角形的面积为4,则直线l的方程为______.13.设向量,且,则__________.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.在平面直角坐标系中,角的顶点在原点,始边与轴的正半轴重合,终边过点,则______16.数列满足,则数列的前6项和为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为等差数列,,,数列为等比数列,,公比.(1)求数列、的通项公式;(2)求数列的前n项和.18.已知为等差数列,前项和为,是首项为的等比数列,且公比大于,,,.(1)求和的通项公式;(2)求数列的前项和.19.经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?20.设二次函数f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.21.已知圆的圆心在线段上,圆经过点,且与轴相切.(1)求圆的方程;(2)若直线与圆交于,两点,当最小时,求直线的方程及的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用正弦定理化简,再利用三角形面积公式,即可得到,由,求得,最后利用余弦定理即可得到答案.【详解】由于,有正弦定理可得:,即由于在中,,,所以,联立,解得:,由于为锐角,且,所以所以在中,由余弦定理可得:,故(负数舍去)故答案选D【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.2、D【解析】

建立空间直角坐标系,结合,求出的坐标,利用向量夹角公式可求.【详解】以为坐标原点,所在直线分别为轴,建立空间直角坐标系,如图,设,则,,,因为,所以,即有.因为,所以,即异面直线和所成角为.故选:D.【点睛】本题主要考查异面直线所成角的求解,异面直线所成角主要利用几何法和向量法,几何法侧重于把异面直线所成角平移到同一个三角形内,结合三角形知识求解;向量法侧重于构建坐标系,利用向量夹角公式求解.3、C【解析】

由古典概型及概率计算公式得2个矩形颜色不同的概率为69【详解】用3种不同颜色给2个矩形随机涂色,每个矩形涂且只涂1种颜色,共32则2个矩形颜色不同共A3即2个矩形颜色不同的概率为69故选:C.【点睛】本题考查了古典概型及概率计算公式,属于基础题.4、B【解析】

根据偶函数性质与幂函数性质可得.【详解】偶函数在上是增函数,则它在上是减函数,所以.故选:B.【点睛】本题考查幂函数的性质,考查偶函数性质,属于基础题.5、D【解析】

根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.6、C【解析】

由题意可知,基本事件总数为,然后列举出事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率.【详解】同时抛掷两个骰子,共有个基本事件,事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件有:、、、、,共个基本事件.因此,所求事件的概率为.故选:C.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.7、A【解析】

由圆柱的侧面展开图是矩形,利用勾股定理求解.【详解】圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从到的最短路径为线段,.故选:A.【点睛】本题考查圆柱侧面展开图中的最短距离问题,是基础题.8、D【解析】

去掉一个最高分和一个最低分后,所剩数据为82,84,84,86,89,由此能求出所剩数据的平均数和方差.【详解】平均数,方差,选D.【点睛】本题考查所剩数据的平均数和方差的求法,考查茎叶图、平均数、方差的性质等基础知识,考查运算求解能力,是基础题.9、B【解析】

根据坐标形式下向量的平行对应的等量关系,即可计算出的值,再根据坐标形式下向量的加法即可求解出的坐标表示.【详解】因为且,所以,所以,所以.故选:B.【点睛】本题考查根据坐标形式下向量的平行求解参数以及向量加法的坐标运算,难度较易.已知,若则有.10、A【解析】

根据相邻的两个组的编号确定组矩,即可得解.【详解】由题:样本中相邻的两个组的编号分别为12,21,所以组矩为9,则第一组所取学生的编号为3,第四组所取学生的编号为30.故选:A【点睛】此题考查系统抽样,关键在于根据系统抽样方法确定组矩,依次求得每组选取的编号.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知及正弦定理可得:,进而利用余弦定理即可求得a的值,进而可求c,利用三角形的面积公式即可求解.【详解】,由正弦定理可得:,,由余弦定理,可得,整理可得:或(舍去),,,故答案为:.【点睛】本题注意考查余弦定理与正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.12、或.【解析】

设直线的方程为,利用已知列出方程,①和②,解方程即可求出直线方程【详解】设直线的方程为.因为点在直线上,所以①.因为直线与两坐标轴围成的三角形的面积为4,所以②.由①②可知或解得或故直线的方程为或,即或.【点睛】本题考查截距式方程和直线与坐标轴形成的三角形面积问题,属于基础题13、【解析】因为,所以,故答案为.14、3【解析】

根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案.【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取的人数为.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题.15、-1【解析】

根据三角函数的定义求得,再代入的展开式进行求值.【详解】角终边过点,终边在第三象限,根据三角函数的定义知:,【点睛】考查三角函数的定义及三角恒等变换,在变换过程中要注意符号的正负.16、84【解析】

根据分组求和法以及等差数列与等比数列前n项和公式求解.【详解】因为,所以.【点睛】本题考查分组求和法以及等差数列与等比数列前n项和公式,考查基本分析求解能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),.(2)【解析】

(1)先求出等差数列的首项和公差,求出等比数列的首项即得数列、的通项公式;(2)利用分组求和求数列的前n项和.【详解】(1)由题得.由题得.(2)由题得,所以数列的前n项和.【点睛】本题主要考查等差等比数列的通项的基本量的计算,考查数列通项的求法和求和,意在考查学生对这些知识的理解掌握水平.18、(1),,;(2),.【解析】

(1)由等差数列和等比数列的基本量法求数列的通项公式;(2)用错位相减法求和.【详解】(1)数列公比为,则,∵,∴,∴,的公差为,首项是,则,,∴,解得.∴.(2),数列的前项和记为,,①,②①-②得:,∴.【点睛】本题考查等差数列和等比数列的通项公式,考查等差数列的前n项和及错位相减法求和.在求等差数列和等比数列的通项公式及前n项和公式时,基本量法是最基本也是最重要的方法,务必掌握,数列求和时除公式法外,有些特殊方法也需掌握:错位相减法,裂项相消法,分组(并项)求和法等等.19、(1)﹒(2)时,最大车流量辆.【解析】

(1)根据题意,解不等式即可求得平均速度的范围.(2)将函数解析式变形,结合基本不等式即可求得最值,及取最值时的自变量值.【详解】(1)车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.则,变形可得,解得,即汽车在平均速度应在内.(2)由,、变形可得,当且仅当,即时取等号,故当汽车的平均速度,车流量最大,最大车流量为千辆/h.【点睛】本题考查了一元二次不等式的解法,由基本不等式求最值,属于基础题.20、(1)5≤f(-2)≤10;(2)[-2,0).【解析】

(1)用和表示,再根据不等式的性质求得.(2)对进行参变分离,根据和求得.【详解】解(1)方法一⇒∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.方法二设f(-2)=mf(-1)+nf(1),即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比较两边系数:⇒∴f(-2)=3f(-1)+f(1),下同方法一.(2)当x∈[0,1]时,-1≤f(x)≤1,即-1≤ax2+x≤1,即当x∈[0,1]时,ax2+x+1≥0且ax2+x-1≤0恒成立;当x=0时,显然,ax2+x+1≥0且ax2+x-1≤0均成立;当x∈(0,1]时,若ax2+x+1≥0恒成立,则a≥--=-(+)2+,而-(+)2+在x∈(0,1]上的最大值为-2,∴a≥-2;当x∈(0,1]时,ax2+x-1≤0恒成立,则a≤-=(-)2-,而(-)2-在x∈(0,1]上的最小值为0,∴a≤0,∴-2≤a≤0,而a≠0,因此所求a的取值范围为[-2,0)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论