贵州省正安县重点名校中考联考数学试卷及答案解析_第1页
贵州省正安县重点名校中考联考数学试卷及答案解析_第2页
贵州省正安县重点名校中考联考数学试卷及答案解析_第3页
贵州省正安县重点名校中考联考数学试卷及答案解析_第4页
贵州省正安县重点名校中考联考数学试卷及答案解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省正安县重点名校中考联考数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是()A. B.C. D.2.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.3.一组数据8,3,8,6,7,8,7的众数和中位数分别是()A.8,6B.7,6C.7,8D.8,74.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是()A. B. C. D.125.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是()A.10π B.15π C.20π D.30π6.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米7.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为(

)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4).A.1 B.2 C.3 D.48.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形9.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30° B.45°C.90° D.135°10.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),⊙C的圆心为点C(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于E点,则△ABE面积的最小值是()A.2B.83C.2+211.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是()A.27 B.36 C.27或36 D.1812.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.使得分式值为零的x的值是_________;14.如图,正方形ABCD中,E是BC边上一点,以E为圆心,EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin∠EAB的值为.15.计算:(﹣2a3)2=_____.16.图1、图2的位置如图所示,如果将两图进行拼接(无覆盖),可以得到一个矩形,请利用学过的变换(翻折、旋转、轴对称)知识,将图2进行移动,写出一种拼接成矩形的过程______.17.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测试的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是_____.18.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠ACB=90°,点D是AB上一点,以BD为直径的⊙O和AB相切于点P.(1)求证:BP平分∠ABC;(2)若PC=1,AP=3,求BC的长.20.(6分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.21.(6分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?22.(8分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=1.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.23.(8分)解方程组24.(10分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.25.(10分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)26.(12分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.(1)求证;∠BDC=∠A.(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.27.(12分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.(1)若CE=1,求BC的长;(1)求证:AM=DF+ME.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故选D.考点:作图—复杂作图.2、A【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,也不是中心对称图形,不合题意;D、不是轴对称图形,不是中心对称图形,不合题意.故选:A.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数.4、C【解析】

设B点的坐标为(a,b),由BD=3AD,得D(,b),根据反比例函数定义求出关键点坐标,根据S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=9求出k.【详解】∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,

),∵S△ODE=S矩形OCBA-S△AOD-S△OCE-S△BDE=ab-•-•-••(b-)=9,∴k=,故选:C【点睛】考核知识点:反比例函数系数k的几何意义.结合图形,分析图形面积关系是关键.5、B【解析】由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,∴圆锥的侧面积=lr=×6π×5=15π,故选B6、D【解析】

根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【点睛】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.7、C【解析】∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO=,∵O为AC中点,∴AC=2AO=2,∴BC=AC=,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正确;∵OG=a,BC=,∴OG≠BC,故(2)错误;∵S△AOE=a•=,SABCD=3a•=32,∴S△AOE=SABCD,故(4)正确;综上所述,结论正确是(1)(3)(4)共3个,故选C.【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键.8、C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9、C【解析】

根据勾股定理求解.【详解】设小方格的边长为1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【点睛】考点:勾股定理逆定理.10、C【解析】当⊙C与AD相切时,△ABE面积最大,连接CD,则∠CDA=90°,∵A(2,0),B(0,2),⊙C的圆心为点C(-1,0),半径为1,∴CD=1,AC=2+1=3,∴AD=AC2-CD∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案为C.11、B【解析】试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(3)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(3)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k的值,再求出方程的两个根进行判断即可.试题解析:分两种情况:(3)当其他两条边中有一个为3时,将x=3代入原方程,得:33-33×3+k=0解得:k=37将k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能组成三角形,不符合题意舍去;(3)当3为底时,则其他两边相等,即△=0,此时:344-4k=0解得:k=3将k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能够组成三角形,符合题意.故k的值为3.故选B.考点:3.等腰三角形的性质;3.一元二次方程的解.12、A【解析】

先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.

故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解析】

根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则,即要使分式为零,则,即综上可得故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.14、.【解析】试题分析:设正方形的边长为y,EC=x,由题意知,AE2=AB2+BE2,即(x+y)2=y2+(y-x)2,由于y≠0,化简得y=4x,∴sin∠EAB=.考点:1.相切两圆的性质;2.勾股定理;3.锐角三角函数的定义15、4a1.【解析】

根据积的乘方运算法则进行运算即可.【详解】原式故答案为【点睛】考查积的乘方,掌握运算法则是解题的关键.16、先将图2以点A为旋转中心逆时针旋转,再将旋转后的图形向左平移5个单位.【解析】

变换图形2,可先旋转,然后平移与图2拼成一个矩形.【详解】先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位可以与图1拼成一个矩形.故答案为:先将图2以点A为旋转中心逆时针旋转90°,再将旋转后的图形向左平移5个单位.【点睛】本题考查了平移和旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.17、1【解析】

根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案.【详解】运动员张华测试成绩的众数是1.故答案为1.【点睛】本题主要考查了众数,关键是掌握众数定义.18、4【解析】

根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.【详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4.【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明见解析;(2).【解析】试题分析:(1)连接OP,首先证明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;

(2)作PH⊥AB于H.首先证明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解决问题.试题解析:(1)连接OP,∵AC是⊙O的切线,∴OP⊥AC,∴∠APO=∠ACB=90°,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC;(2)作PH⊥AB于H.则∠AHP=∠BHP=∠ACB=90°,又∵∠PBC=∠OBP,PB=PB,∴△PBC≌△PBH,∴PC=PH=1,BC=BH,在Rt△APH中,AH=,在Rt△ACB中,AC2+BC2=AB2∴(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得.20、(1);(2)【解析】

(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,∴甲投放了一袋是餐厨垃圾的概率是,故答案为:;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为=.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.【解析】

(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】⑴把C(6,-1)代入,得.则反比例函数的解析式为,把代入,得,∴点D的坐标为(-2,3).⑵将C(6,-1)、D(-2,3)代入,得,解得.∴一次函数的解析式为,∴点B的坐标为(0,2),点A的坐标为(4,0).∴,在在中,∴.⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.22、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,yp的取值范围是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB为直角,进而得出答案.【详解】(1)MN与AB的关系是:MN⊥AB,MN=AB,如图1,∵△AMB是等腰直角三角形,且N为AB的中点,∴MN⊥AB,MN=AB,故答案为MN⊥AB,MN=AB;(2)∵抛物线y=对应的准蝶形必经过B(m,m),∴m=m2,解得:m=2或m=0(不合题意舍去),当m=2则,2=x2,解得:x=±2,则AB=2+2=4;故答案为2,4;(2)①由已知,抛物线对称轴为:y轴,∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=1.∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴抛物线的解析式是:y=x2﹣2;②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB为直角,∴在此抛物线的对称轴上有这样的点P,使得∠APB为锐角,yp的取值范围是yp<﹣2或yp>2.【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.23、【解析】

将②×3,再联立①②消未知数即可计算.【详解】解:②得:③①+③得:把代入③得∴方程组的解为【点睛】本题考查二元一次方程组解法,关键是掌握消元法.24、(1)图形见解析,216件;(2)【解析】

(1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;

(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.【详解】(1)4个班作品总数为:件,所以D班级作品数量为:36-6-12-10=8;∴估计全校共征集作品×36=324件.

条形图如图所示,

(2)男生有3名,分别记为A1,A2,A3,女生记为B,

列表如下:A1A2A3BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B(B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.

所以选取的两名学生恰好是一男一女的概率为.【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.25、7.6m.【解析】

利用CD及正切函数的定义求得BC,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论