




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁沈阳市郊联体2025届数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.92.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.3.设在中,角所对的边分别为,若,则的形状为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定4.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.5.设集合,则()A. B. C. D.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择的游戏盘是A. B. C. D.7.已知函数f(x)是定义在上的奇函数,当x>0时,f(x)=2x-3,则A.14B.-114C.8.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.9.已知平面向量,,且,则实数的值为()A. B. C. D.10.设等比数列的前项和为,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知斜率为的直线的倾斜角为,则________.12.若数列满足(),且,,__.13.设函数,则的值为__________.14.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.15.若三角形ABC的三个角A,B,C成等差数列,a,b,c分别为角A,B,C的对边,三角形ABC的面积,则b的最小值是________.16.如果是奇函数,则=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(,,)的部分图象如图所示,其中点是图象的一个最高点.(Ⅰ)求函数的解析式;(Ⅱ)已知且,求.18.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求点到平面的距离.19.已知圆经过点,且圆心在直线:上.(1)求圆的方程;(2)过点的直线与圆交于两点,问在直线上是否存在定点,使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.20.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧远处一山顶D在西偏北的方向上,仰角为,行驶4km后到达B处,测得此山顶在西偏北的方向上.(1)求此山的高度(单位:km);(2)设汽车行驶过程中仰望山顶D的最大仰角为,求.21.已知的三个顶点分别为,,,求:(1)边上的高所在直线的方程;(2)的外接圆的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.2、C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.3、B【解析】
利用正弦定理可得,结合三角形内角和定理与诱导公式可得,从而可得结果.【详解】因为,所以由正弦定理可得,,所以,所以是直角三角形.【点睛】本题主要考查正弦定理的应用,属于基础题.弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.4、C【解析】
先将化为弧度数,再利用扇形面积计算公式即可得出.【详解】所以扇形的面积为:故选:C【点睛】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.5、B【解析】
补集:【详解】因为,所以,选B.【点睛】本题主要考查了集合的运算,需要掌握交集、并集、补集的运算。属于基础题。6、A【解析】由几何概型公式:A中的概率为,B中的概率为,C中的概率为,D中的概率为.本题选择A选项.点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动范围.当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.7、D【解析】试题分析:函数f(x)是定义在上的奇函数,,故答案为D.考点:奇函数的应用.8、C【解析】
根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【点睛】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.9、B【解析】
先求出的坐标,再由向量共线,列出方程,即可得出结果.【详解】因为向量,,所以,又,所以,解得.故选B【点睛】本题主要考查由向量共线求参数的问题,熟记向量的坐标运算即可,属于常考题型.10、C【解析】
由,,联立方程组,求出等比数列的首项和公比,然后求.【详解】解:若,则,显然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故选:C.【点睛】本题主要考查等比数列的前项和公式的应用,要求熟练掌握,特别要注意对公比是否等于1要进行讨论,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由直线的斜率公式可得=,分析可得,由同角三角函数的基本关系式计算可得答案.【详解】根据题意,直线的倾斜角为,其斜率为,则有=,则,必有,即,平方有:,得,故,解得或(舍).故答案为﹣【点睛】本题考查直线的倾斜角,涉及同角三角函数的基本关系式,属于基础题.12、1【解析】
由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】
根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.14、92【解析】
由题可得,进而可得,再计算出,从而得出答案.【详解】5个样本成份的平均值为,标准差为,所以,,即,解得因为,所以所以这批中成药的药物功效的平均值药物单位【点睛】本题考查求几个数的平均数,解题的关键是求出,属于一般题.15、【解析】
先求出,再根据面积得到,再利用余弦定理和基本不等式得解.【详解】由题得,所以.由余弦定理得,当且仅当时取等.所以b的最小值是.故答案为:【点睛】本题主要考查余弦定理解三角形,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平.16、-2【解析】试题分析:∵,∴,∴,∴=-2考点:本题考查了三角函数的性质点评:对于定义域为R的奇函数恒有f(0)=0.利用此结论可解决此类问题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)由最值和两个零点计算出和的值,再由最值点以及的的范围计算的值;(Ⅱ)先根据(Ⅰ)中解析式将表示出来,然后再利用两角和的正弦公式计算的值.【详解】解:(Ⅰ)由函数最大值为2,得由∴又,,∴,,又,∴∴(Ⅱ)∵,且,∴∴【点睛】根据三角函数图象求解析式的步骤:(1)由最值确定的值;(2)由周期确定的值;(3)由最值点或者图像上的点确定的取值.这里需要注意确定的值时,尽量不要选取平衡位置上的点,这样容易造成多解的情况.18、(1)见解析;(2)【解析】
(1)作为棱的中点,连结,,通过证明平面可得.(2)根据等体积法:可求得.【详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分别为,的中点,∴,∴.又,∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴.又∵平面平面,且平面平面,平面,∴平面.∴.设点到平面,的距离.在中,,,则.又∵,∴,则.【点睛】本题考查了直线与平面垂直的判定与性质,考查了等体积法求点面距,属于中档题.19、(1)(2)在直线上存在定点,使得恒成立,详见解析【解析】
(1)求出弦中垂线方程,由中垂线和直线相交得圆心坐标,再求出圆半径,从而得圆标准方程;(2)直线斜率存在时,设方程为,代入圆的方程,得的一元二次方程,同时设交点为由韦达定理得,假设定点存在,设其为,由求得,再验证所作直线斜率不存在时,点也满足题意.【详解】(1)的中点为,∴的垂直平分线的斜率为,∴的垂直平分线的方程为,∴的垂直平分线与直线交点为圆心,则,解得,又.∴圆的方程为.(2)当直线的斜率存在时,设直线的斜率为,则过点的直线方程为,故由,整理得,设,设,则,,,即,当斜率不存在时,成立,∴在直线上存在定点,使得恒成立【点睛】本题考查求圆的标准方程,考查与圆有关的定点问题.求圆的标准方程可先求出圆心坐标和圆的半径,然后得标准方程,注意圆心一定在弦的中垂线上.定点问题,通常用设而不求思想,即设直线方程与圆方程联立消元后得一元二次方程,设直线与圆的交点坐标为,由韦达定理得,然后设定点坐标如本题,再由条件求出,若不能求出说明定点不存在,如能求出值,注意验证直线斜率不存在时,此定点也满足题意.20、(1)km.(2)【解析】
(1)设此山高,再根据三角形中三角函数的关系以及正弦定理求解即可.(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,再计算到直线的距离即可.【详解】解:(1)设此山高,则,在中,,,.根据正弦定理得,即,解得(km).(2)由题意可知,当点C到公路距离最小时,仰望山顶D的仰角达到最大,所以过C作,垂足为E,连接DE.则,,,所以.【点睛】本题主要考查了解三角形在实际中的运用,需要根据题意找到对应的直角三角形中的关系,或利用正弦定理求解.属于中档题.21、(1)2x+y-2=0;(2)x2+y2+2x+2y-8
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公共卫生考试内容梳理方法试题及答案
- 手游运营笔试题及答案
- 中考物理试题及答案云南
- 科学备考2024网络规划设计师考试的策略试题及答案
- 数控切割测试题及答案
- 理解儿童发展理论与应用试题及答案
- 及格算试题及答案
- 乡村全科执业医师的临床应用试题及答案
- 医学基础知识学习管理技巧试题及答案2024年
- 百年大计护士资格证考试试题及答案
- (一模)桂林市、来宾市2025届高考第一次跨市联合模拟考试地理试卷(含答案详解)
- 2025-2030“一带一路”之菲律宾矿业行业市场深度调研及发展趋势与投资前景预测研究报告
- 饰品干货知识培训课件
- 2025-2030中国国防车辆行业市场发展趋势与前景展望战略研究报告
- 2025年03月荆门市“招硕引博”1412人笔试历年参考题库考点剖析附解题思路及答案详解
- “育人为本,德育为先”在学校人才培养方案中的具体体现
- 兽医病理学基础试题及答案
- 电力电缆及通道检修规程QGDW 11262-2014(文字版)
- 我是安全守法小公民
- 2025年六安城市建设投资有限公司招聘笔试参考题库含答案解析
- 2025年安徽淮北市建投控股集团招聘笔试参考题库含答案解析
评论
0/150
提交评论