版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届长春市重点中学高一下数学期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.62.已知,则的值域为A. B. C. D.3.直线的倾斜角为()A.30° B.60° C.120° D.150°4.已知平面内,,,且,则的最大值等于()A.13 B.15 C.19 D.215.已知函数,若存在,且,使成立,则以下对实数的推述正确的是()A. B. C. D.6.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.57.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为A.; B.C. D.8.菱形ABCD,E是AB边靠近A的一个三等分点,DE=4,则菱形ABCD面积最大值为()A.36 B.18 C.12 D.99.在正方体中,直线与直线所成角是()A. B. C. D.10.已知圆C1:x2+y2+4y+3=0,圆C2:x2+A.210-3 B.210+3二、填空题:本大题共6小题,每小题5分,共30分。11.中,若,,,则的面积______.12.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.13.已知腰长为的等腰直角△中,为斜边的中点,点为该平面内一动点,若,则的最小值________.14.适合条件的角的取值范围是______.15.数列通项公式,前项和为,则________.16.某学校成立了数学,英语,音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图.现随机选取一个成员,他恰好只属于2个小组的概率是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知四棱锥,底面是边长为的菱形,,侧面为正三角形,侧面底面,为侧棱的中点,为线段的中点(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)求三棱锥的体积18.已知函数.(Ⅰ)求的最小正周期;(Ⅱ)若在区间上的最大值为,求的最小值.19.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为(1)求的值;(2)求的值.20.已知函数f(x)=2cosx(sinx﹣cosx).(1)求函数f(x)的最小正周期及单调递减区间:(2)将f(x)的图象向左平移个单位后得到函数g(x)的图象,若方程g(x)=m在区间[0,]上有解,求实数m的取值范围.21.已知函数,设其最小值为(1)求;(2)若,求a以及此时的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.2、C【解析】
利用求函数的周期为,计算即可得到函数的值域.【详解】因为,,,因为函数的周期,所以函数的值域为,故选C.【点睛】本题考查函数的周期运算,及利用函数的周期性求函数的值域.3、D【解析】
由直线方程得到直线斜率,进而得到其倾斜角.【详解】因直线方程为,所以直线的斜率,故其倾斜角为150°.故选D【点睛】本题主要考查求直线的倾斜角,熟记定义即可,属于基础题型.4、A【解析】
令,,将,表示成,,即可将表示成,展开可得:,再利用基本不等式即可求得其最大值.【详解】令,,则又,所以当且仅当时,等号成立.故选:A【点睛】本题主要考查了平面向量基本定理的应用及利用基本不等式求最值,考查转化能力及计算能力,属于难题.5、A【解析】
先根据的图象性质,推得函数的单调区间,再依据条件分析求解.【详解】解:是把的图象中轴下方的部分对称到轴上方,函数在上递减;在上递增.函数的图象可由的图象向右平移1个单位而得,在,上递减,在,上递增,若存在,,,,使成立,故选:.【点睛】本题考查单调函数的性质、反正切函数的图象性质及函数的图象的平移.图象可由的图象向左、向右平移个单位得到,属于基础题.6、B【解析】
根据三角函数的定义建立方程关系即可.【详解】因为角的终边经过点且,所以则解得【点睛】本题主要考查三角函数的定义的应用,应注意求出的b为正值.7、A【解析】
试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.8、B【解析】
设出菱形的边长,在三角形ADE中,用余弦定理表示出cosA【详解】设菱形的边长为3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故选:B【点睛】本小题主要考查余弦定理解三角形,考查同角三角函数的基本关系式,考查菱形的面积公式,考查二次函数最值的求法,属于中档题.9、B【解析】
直线与直线所成角为,为等边三角形,得到答案.【详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力.10、A【解析】
求出圆C1,C2的圆心坐标和半径,作出圆C1关于直线l的对称圆C1',连结C1'C2,则C1'C2与直线l的交点即为P点,此时M点为P【详解】由圆C1:x可知圆C1圆心为0,-2圆C2圆心为3,-1圆C1关于直线l:y=x+1的对称圆为圆C连结C1'C2,交l于P,则此时M点为PC1'与圆C1'的交点关于直线l对称的点,N最小值为C1而C1∴PM+PN【点睛】本题考查了圆方程的综合应用,考查了利用对称关系求曲线上两点间的最小距离,体现了数形结合的解题思想方法,是中档题.解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用三角形的面积公式可求出的面积的值.【详解】由三角形的面积公式可得.故答案为:.【点睛】本题考查三角形面积的计算,熟练利用三角形的面积公式是计算的关键,考查计算能力,属于基础题.12、【解析】
列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【详解】所有的基本事件有:、、、、、、、、、,共个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:、、,共个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为,故答案为.【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.13、【解析】
如图建立平面直角坐标系,∴,当sin时,得到最小值为,故选.14、【解析】
根据三角函数的符号法则,得,从而求出的取值范围.【详解】,的取值范围的解集为.故答案为:【点睛】本题主要考查了三角函数符号法则的应用问题,是基础题.15、1【解析】
利用裂项求和法求出,取极限进而即可求解.【详解】,故,所以,故答案为:1【点睛】本题考查了裂项求和法以及求极限值,属于基础题.16、【解析】
由题中数据,确定课外小组的总人数,以及恰好属于2个小组的人数,人数比即为所求概率.【详解】由题意可得,课外小组的总人数为,恰好属于2个小组的人数为,所以随机选取一个成员,他恰好只属于2个小组的概率是.故答案为【点睛】本题主要考查古典概型,熟记列举法求古典概型的概率即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)【解析】
(Ⅰ)连接,交于点;根据三角形中位线可证得;由线面平行判定定理可证得结论;(Ⅱ)由等腰三角形三线合一可知;由面面垂直的性质可知平面;根据线面垂直性质可证得结论;(Ⅲ)利用体积桥的方式将所求三棱锥体积转化为;根据已知长度和角度关系分别求得四边形面积和高,代入得到结果.【详解】(Ⅰ)证明:连接,交于点四边形为菱形为中点又为中点平面,平面平面(Ⅱ)为正三角形,为中点平面平面,平面平面,平面平面,又平面(Ⅲ)为中点又,,由(Ⅱ)知,【点睛】本题考查立体几何中线面平行、线线垂直关系的证明、三棱锥体积的求解问题;涉及到线面平行判定定理、面面垂直性质定理和判定定理的应用、体积桥的方式求解三棱锥体积等知识,属于常考题型.18、(Ⅰ);(Ⅱ).【解析】
(I)将化简整理成的形式,利用公式可求最小正周期;(II)根据,可求的范围,结合函数图象的性质,可得参数的取值范围.【详解】(Ⅰ),所以的最小正周期为.(Ⅱ)由(Ⅰ)知.因为,所以.要使得在上的最大值为,即在上的最大值为1.所以,即.所以的最小值为.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负.19、(1)(2)【解析】
试题分析:(1)根据题意,由三角函数的定义可得与的值,进而可得出与的值,从而可求与的值就,结合两角和正切公式可得答案;(2)由两角和的正切公式,可得出的值,再根据的取值范围,可得出的取值范围,进而可得出的值.由条件得cosα=,cosβ=.∵α,β为锐角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β为锐角,∴0<α+2β<,∴α+2β=20、(1)函数的最小正周期为π;函数的减区间为[kπ,kπ],k∈Z(2)m∈[﹣2,1]【解析】
(1)利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性和单调性,得出结论;(2)利用正弦函数的定义域和值域,求得的范围,进而可得的范围.【详解】(1)函数f(x)=2cosx(sinx﹣cosx)sin2x﹣(1+cos2x)=2sin(2x)﹣1,故函数的最小正周期为π.令2kπ2x2kπ,求得kπx≤kπ,可得函数的减区间为[kπ,kπ],k∈Z.(2)将f(x)的图象向左平移个单位后,得到函数g(x)=2sin(2x)﹣1=2sin(2x)﹣1的图象.在区间[0,]上,2x∈[,],sin(2x)∈[,1],f(x)∈[﹣2,1].若方程g(x)=m在区间[0,]上有解,则m∈[﹣2,1].【点睛】本题主要考查三角恒等变换,正弦函数的周期性和单调性,函数的恒成立问题,正弦函数的定义域和值域,属于中档题.21、(1)(2),【解析】
(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况、和讨论,根据二次函数求最小值的方法求出的最小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程质量事故报告处理制度
- 企业战略规划解除劳动合同模板
- 会计岗位劳动合同
- 交通运输规划项目索赔解决方案
- 代理销售权益协议
- 产学研合作技术协议
- 二手货车交易合同
- 三七粉在养生保健中的重要性
- 电子商务平台品牌塑造与传播服务合同
- 电子商务平台优化与升级服务合同
- 2024至2030年中国气管插管市场前景及融资战略咨询报告
- 《研学旅行基地运营与管理》课件-4.3.2研学基地住宿设施服务的管理
- 北师大版小学三年级数学上册各单元测试题(全册)
- 矿山开采规划与设计考核试卷
- 企业财务管理系统开发合同
- 《马克思主义发展史》题集
- 2024-2030年中国CVD和和ALD前体行业市场发展趋势与前景展望战略分析报告
- 人音版音乐五年级上册第6课《嬉游曲》教学设计
- 北师大版(2024新教材)七年级上册 第3章 整式及其加减 单元测试卷 含详解
- 2024年海南三亚市旅游推广局招聘历年(高频重点复习提升训练)共500题附带答案详解
- 财务部年终工作总结增效降本创新发展
评论
0/150
提交评论