甘肃省武威市六中2025届高一数学第二学期期末教学质量检测模拟试题含解析_第1页
甘肃省武威市六中2025届高一数学第二学期期末教学质量检测模拟试题含解析_第2页
甘肃省武威市六中2025届高一数学第二学期期末教学质量检测模拟试题含解析_第3页
甘肃省武威市六中2025届高一数学第二学期期末教学质量检测模拟试题含解析_第4页
甘肃省武威市六中2025届高一数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省武威市六中2025届高一数学第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B.C. D.2.已知圆,圆,则圆与圆的位置关系是()A.相离 B.相交 C.外切 D.内切3.同时掷两个骰子,向上的点数之和是的概率是()A. B. C. D.4.设,若3是与的等比中项,则的最小值为().A. B. C. D.5.已知平面向量的夹角为,且,则()A. B. C. D.6.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立7.已知锐角△ABC的面积为,BC=4,CA=3,则角C的大小为()A.75° B.60° C.45° D.30°8.已知在角终边上,若,则()A. B.-2 C.2 D.9.若平面α∥平面β,直线平面α,直线n⊂平面β,则直线与直线n的位置关系是()A.平行 B.异面C.相交 D.平行或异面10.2021年某省新高考将实行“”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件:“他选择政治和地理”,事件:“他选择化学和地理”,则事件与事件()A.是互斥事件,不是对立事件 B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件 D.既不是互斥事件也不是对立事件二、填空题:本大题共6小题,每小题5分,共30分。11.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.12.已知两条直线,将圆及其内部划分成三个部分,则的取值范围是_______;若划分成的三个部分中有两部分的面积相等,则的取值有_______种可能.13.已知数列中,,,则数列通项___________14.已知等差数列满足,则____________.15.函数f(x)=coscos的最小正周期为________.16.对于下列数排成的数阵:它的第10行所有数的和为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=.(1)若不等式k≤xf(x)+在x∈[1,3]上恒成立,求实数k的取值范围;(2)当x∈(m>0,n>0)时,函数g(x)=tf(x)+1(t≥0)的值域为[2-3m,2-3n],求实数t的取值范围.18.已知是递增的等比数列,且,.(1)求数列的通项公式;(2)为各项非零的等差数列,其前n项和为,已知,求数列的前n项和.19.如图,在中,,四边形是边长为的正方形,平面平面,若,分别是的中点.(1)求证:平面;(2)求证:平面平面;(3)求几何体的体积.20.某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题统计结果如图表所示.组号

分组

回答正确

的人数

回答正确的人数

占本组的概率

第1组

5

0.5

第2组

0.9

第3组

27

第4组

0.36

第5组

3

(Ⅰ)分别求出的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(Ⅲ)在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.21.记数列的前项和为,已知点在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

比较与时不等式左边的项,即可得到结果【详解】因此不等式左边为,选C.【点睛】本题考查数学归纳法,考查基本分析判断能力,属基础题2、C【解析】,,,,,即两圆外切,故选.点睛:判断圆与圆的位置关系的常见方法(1)几何法:利用圆心距与两半径和与差的关系.(2)切线法:根据公切线条数确定.(3)数形结合法:直接根据图形确定3、C【解析】

分别计算出所有可能的结果和点数之和为的所有结果,根据古典概型概率公式求得结果.【详解】同时掷两个骰子,共有种结果其中点数之和是的共有:,共种结果点数之和是的概率为:本题正确选项:【点睛】本题考查古典概型问题中的概率的计算,关键是能够准确计算出总体基本事件个数和符合题意的基本事件个数,属于基础题.4、C【解析】

由3是与的等比中项,可得,再利用不等式知识可得的最小值.【详解】解:3是与的等比中项,,,=,故选C.【点睛】本题考查了指数式和对数式的互化,及均值不等式求最值的运用,考查了计算变通能力.5、B【解析】

将模平方后利用数量积的定义计算其结果,然后开根号得出的值.【详解】,因此,,故选B.【点睛】本题考查利用平面向量的数量积来求平面向量的模,通常利用平方法结合平面向量数量积的定义来进行求解,考查计算能力,属于中等题.6、C【解析】

写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.7、B【解析】试题分析:由三角形的面积公式,得,即,解得,又因为三角形为锐角三角形,所以.考点:三角形的面积公式.8、C【解析】

由正弦函数的定义求解.【详解】,显然,∴.故选C.【点睛】本题考查正弦函数的定义,属于基础题.解题时注意的符号.9、D【解析】

由面面平行的定义,可得两直线无公共点,可得所求结论.【详解】平面α∥平面β,可得两平面α,β无公共点,即有直线与直线也无公共点,可得它们异面或平行,故选:D.【点睛】本题考查空间线线的位置关系,考查面面平行的定义,属于基础题.10、A【解析】

事件与事件不能同时发生,是互斥事件,他还可以选择化学和政治,不是对立事件,得到答案.【详解】事件与事件不能同时发生,是互斥事件他还可以选择化学和政治,不是对立事件故答案选A【点睛】本题考查了互斥事件和对立事件,意在考查学生对于互斥事件和对立事件的理解.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.12、3【解析】

易知直线过定点,再结合图形求解.【详解】依题意得直线过定点,如图:若两直线将圆分成三个部分,则直线必须与圆相交于图中阴影部分.又,所以的取值范围是;当直线位于时,划分成的三个部分中有两部分的面积相等.【点睛】本题考查直线和圆的位置关系的应用,直线的斜率,结合图形是此题的关键.13、【解析】分析:在已知递推式两边同除以,可得新数列是等差数列,从而由等差数列通项公式求得,再得.详解:∵,∴两边除以得,,即,∵,∴,∴是以为首项,以为公差的等差数列,∴,∴.故答案为.点睛:在求数列公式中,除直接应用等差数列和等比数列的通项公式外,还有一种常用方法:对递推式化简变形,可构造出新数列为等差数列或等比数列,再由等差(比)数列的通项公式求出结论.这是一种转化与化归思想,必须掌握.14、9【解析】

利用等差数列下标性质求解即可【详解】由等差数列的性质可知,,则.所以.故答案为:9【点睛】本题考查等差数列的性质,熟记性质是关键,是基础题15、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期为T==216、【解析】

由题意得第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,再根据奇数为负数,偶数为正数,得到第10行的各个数,由此能求出第10行所有数的和.【详解】第1行1个数,第2行2个数,则第9行9个数,故第10行的第一个数的绝对值为,第10行的最后一个数的绝对值为,且奇数为负数,偶数为正数,故第10行所有数的和为,故答案为:.【点睛】本题以数阵为背景,观察数列中项的特点,求数列通项和前项和,考查逻辑推理能力和运算求解能力,求解时要注意等差数列性质的合理运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)k≤1;(2)(0,1).【解析】试题分析:(1)把f(x)=代入,化简得k≤x在[1,3]上恒成立,所以k≤1.(2)g(x)=tf(x)+1=-+t+1,又x∈(m>0,n>0),所以g(x)在单调递增,所以即,即m,n是关于x的方程tx2-3x+1-t=0的两个不等的正根.由根的分布,可得,解得0<t<1.试题解析:(1)∵xf(x)+=+=x,∴不等式k≤xf(x)+在x∈[1,3]上恒成立,即为k≤x在[1,3]上恒成立.∴k≤1.(2)∵g(x)=tf(x)+1=-+t+1,若t=0,则g(x)=1,不合题意,∴t>0.又当t>0时,g(x)=-+t+1在上显然是单调增函数,∴即∴m,n是关于x的方程tx2-3x+1-t=0的两个不等的正根.令h(x)=tx2-3x+1-t,则解得0<t<1.∴实数t的取值范围是(0,1).18、(1);(2)【解析】

(1){an}是递增的等比数列,公比设为q,由等比数列的中项性质,结合等比数列的通项公式解方程可得所求;(2)运用等差数列的求和公式和等差数列中项性质,求得bn=2n+1,再由数列的错位相减法求和,化简可得所求和.【详解】(1)∵是递增的等比数列,∴,,又,∴,是的两根,∴,,∴,.(2)∵,∴由已知得,∴∴,化简可得.【点睛】本题考查数列的通项和求和,等差等比数列的通项通常是列方程组解首项及公差(比),数列求和常见的方法有:裂项相消和错位相减法,考查计算能力,属于中等题.19、(1)详见解析(2)详见解析(2)【解析】

试题分析:(1)如图,连接EA交BD于F,利用正方形的性质、三角形的中位线定理、线面平行的判定定理即可证明.(2)利用已知可得:FG⊥平面EBC,可得∠FBG就是线BD与平面EBC所成的角.经过计算即可得出.(3)利用体积公式即可得出.试题解析:(1)如图,连接,易知为的中点.因为,分别是和的中点,所以,因为平面,平面,所以平面.(2)证明:因为四边形为正方形,所以.又因为平面平面,所以平面.所以.又因为,所以.所以平面.从而平面平面.(3)取AB中点N,连接,因为,所以,且.又平面平面,所以平面.因为是四棱锥,所以.即几何体的体积.点睛:本题考查了正方形的性质、线面,面面平行垂直的判定与性质定理、三棱锥的体积计算公式、线面角的求法,考查了推理能力与计算能力,属于中档题.20、(Ⅰ);(Ⅱ)第2组抽人;第3组抽3人;第4组抽1人;(III).【解析】

(Ⅰ)由频率表中第1组数据可知,第1组总人数为,再结合频率分布直方图可知∴=100×0.020×10×0.9=18,b=100×0.025×10×0.36=9,,(Ⅱ)第2,3,4组中回答正确的共有54人.∴利用分层抽样在54人中抽取6人,每组分别抽取的人数为:第2组:人,第3组:人,第4组:人.(Ⅲ)设第2组的2人为、,第3组的3人为、、,第4组的1人为,则从6人中抽2人所有可能的结果有:,,,,,,,,,,,,,,,共15个基本事件,其中第2组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论