版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省临沂市平邑县、沂水县数学高一下期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列满足,,则()A. B. C. D.2.函数的图象的相邻两支截直线所得的线段长为,则的值是()A.0 B. C.1 D.3.数列的首项为,为等差数列,且(),若,,则()A. B. C. D.4.在数列an中,a1=1,an=2A.211 B.25.在平面直角坐标系中,,分别是轴和轴上的动点,若直线恰好与以为直径的圆相切,则圆面积的最小值为()A. B. C. D.6.的周期为()A. B. C. D.7.圆关于直线对称,则的值是()A. B. C. D.8.关于某设备的使用年限(单位:年)和所支出的维修费用(单位:万元)有如下统计数据表:使用年限维修费用根据上表可得回归直线方程,据此估计,该设备使用年限为年时所支出的维修费用约是()A.万元 B.万元 C.万元 D.万元9.已知数列共有项,满足,且对任意、,有仍是该数列的某一项,现给出下列个命题:(1);(2);(3)数列是等差数列;(4)集合中共有个元素.则其中真命题的个数是()A. B. C. D.10.在中,内角所对的边分别为,且,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在轴上有一点,点到点与点的距离相等,则点坐标为____________.12.已知内接于抛物线,其中O为原点,若此内接三角形的垂心恰为抛物线的焦点,则的外接圆方程为_____.13.已知,若对任意,均有,则的最小值为______;14.等比数列的前项和为,若,,成等差数列,则其公比为_________.15.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为________.16.已知为等差数列,,,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直四棱柱中,底面为等腰梯形,,,,,、、分别是、、的中点.(1)证明:直线平面;(2)求直线与面所成角的大小;(3)求二面角的平面角的余弦值.18.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.19.已知等比数列的公比,前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知圆,直线.圆与轴交于两点,是圆上不同于的一动点,所在直线分别与交于.(1)当时,求以为直径的圆的方程;(2)证明:以为直径的圆截轴所得弦长为定值.21.如图,在直棱柱中,,,,分别是棱,上的点,且平面.(1)证明://;(2)求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由给出的递推式变形,构造出新的等比数列,由等比数列的通项公式求出的表达式,再利用等比数列的求和公式求解即可.【详解】解:解:在数列中,
由,得,
,
,
则数列是以2为首项,以2为公比的等比数列,
.,故选:A.【点睛】本题考查了数列的递推式,考查了等比关系的确定以及等比数列的求和公式,属中档题.2、C【解析】
根据题意可知函数周期为,利用周期公式求出,计算即可求值.【详解】由正切型函数的图象及相邻两支截直线所得的线段长为知,,所以,,故选C.【点睛】本题主要考查了正切型函数的周期,求值,属于中档题.3、B【解析】由题意可设等差数列的首项为,公差为,所以所以,所以,即=2n-8,=,所以,选B.4、D【解析】
将a1=1代入递推公式可得a2,同理可得出a【详解】∵a1=1,an=22an-1-1(【点睛】本题用将a15、A【解析】
根据题意画出图像,数形结合,根据圆面积最小的条件转化为直径等于原点到直线的距离,再求解圆面积即可.【详解】根据题意画出图像如图所示,圆心为线段中点,为直角三角形,所以,作直线且交于点,直线与圆相切,所以,要使圆面积的最小,即使半径最小,由图知,当点、、共线时,圆的半径最小,此时原点到直线的距离为,由点到直线的距离公式:,解得,所以圆面积的最小值.故选:A【点睛】本题主要考查点到直线距离公式和圆切线的应用,考查学生分析转化能力和数形结合的思想,属于中档题.6、D【解析】
根据正弦型函数最小正周期的结论即可得到结果.【详解】函数的最小正周期故选:【点睛】本题考查正弦型函数周期的求解问题,关键是明确正弦型函数的最小正周期.7、B【解析】圆关于直线对称,所以圆心(1,1)在直线上,得.故选B.8、C【解析】
计算出和,将点的坐标代入回归直线方程,求得实数的值,然后将代入回归直线方程可求得结果.【详解】由表格中的数据可得,,由于回归直线过样本中心点,则,解得,所以,回归直线方程为,当时,.因此,该设备使用年限为年时所支出的维修费用约是万元.故选:C.【点睛】本题考查利用回归直线方程对总体数据进行估计,充分利用结论“回归直线过样本的中心点”的应用,考查计算能力,属于基础题.9、D【解析】
对任意的、,有仍是该数列的某一项,可得出是该数列中的项,由于,可得,即,以此类推即可判断出结论.【详解】对任意、,有仍是该数列的某一项,,当时,则,必有,即,而或.若,则,而、、,舍去;若,此时,,同理可得.可得数列为:、、、、.综上可得:(1);(2);(3)数列是等差数列;(4)集合,该集合中共有个元素.因此,(1)(2)(3)(4)都正确.故选:D.【点睛】本题考查有关数列命题真假的判断,涉及数列的新定义,考查推理能力与分类讨论思想的应用,属于中等题.10、C【解析】
根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sinA,进而利用二倍角余弦公式得到结果.【详解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故选C【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.12、【解析】
由抛物线的对称性知A、B关于x轴对称,设出它们的坐标,利用三角形的垂心的性质,结合斜率之积等于﹣1即可求得直线MN的方程,即可求出点C的坐标,问题得以解决.【详解】∵抛物线关于x轴对称,内接三角形的垂心恰为抛物线的焦点,三边上的高过焦点,∴另两个顶点A,B关于x轴对称,即△ABO是等腰三角形,作AO的中垂线MN,交x轴与C点,而Ox是AB的中垂线,故C点即为△ABO的外接圆的圆心,OC是外接圆的半径,设A(x1,2),B(x1,﹣2),连接BF,则BF⊥AO,∵kBF,kAO,∴kBF•kAO=•1,整理,得x1(x1﹣5)=1,则x1=5,(x1=1不合题意,舍去),∵AO的中点为(,),且MN∥BF,∴直线MN的方程为y(x),当x1=5代入得2x+4y﹣91,∵C是MN与x轴的交点,∴C(,1),而△ABO的外接圆的半径OC,于是得到三角形外接圆方程为(x)2+y2=()2,△OAB的外接圆方程为:x2﹣9x+y2=1,故答案为x2﹣9x+y2=1.【点睛】本题考查抛物线的简单性质,考查了两直线垂直与斜率的关系,是中档题13、【解析】
根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.14、【解析】试题分析:、、成等差数列考点:1.等差数列性质;2.等比数列通项公式15、【解析】
求出的垂直平分线方程,两垂直平分线交点为外接圆圆心.再由两点间距离公式计算.【详解】由点B(0,),C(2,),得线段BC的垂直平分线方程为x=1,①由点A(1,0),B(0,),得线段AB的垂直平分线方程为②联立①②,解得△ABC外接圆的圆心坐标为,其到原点的距离为.故答案为:【点睛】本题考查三角形外接圆圆心坐标,外心是三角形三条边的中垂线的交点,到三顶点距离相等.16、【解析】
由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)(3)【解析】
(1)取的中点,证明为平行四边形,且,再由三角形中位线证明,最后由线面平行的判定定理证明即可;(2)作交于点,由线面垂直关系得到直线与面所成角为,再根据是正三角形求解即可;(3)由(2)知,平面,再证明和分别垂直于,求出直线与面所成角为,再求出和的长度即可求解.【详解】(1)在直四棱柱中,取的中点,连接,,,因为,,且,所以为平行四边形,所以,又因为、分别是棱、的中点,所以,所以,因为.所以、、、四点共面,所以平面,又因为平面,所以直线平面.(2)因为,,是棱的中点,所以,为正三角形,取的中点,则,又因为直四棱柱中,平面,所以,所以平面,即直线与面所成角为,所以,即,所以直线与面所成角为.(3)过在平面内作,垂足为,连接.因为面,即,且与相交于点,故且,则为二面角的平面角,在正三角形中,,在中,,∵,∴,在中,,,所以二面角的余弦值为.【点睛】本题主要考查线面平行的判定、线面角和二面角的求法,考查学生的空间想象能力和对线面关系的掌握,属于中档题.18、(1)分别抽取人,人,人;(2)【解析】
(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,,,,,,,,,,,,共有种.其中第组的志愿者被抽中的有种,答:第组的志愿者有被抽中的概率为【点睛】本题考查频率分布直方图,分层抽样和古典概型,注意列举所有情况时不要遗漏.19、(1).(2)【解析】
(1)根据条件列出等式,求解公比后即可求解出通项公式;(2)错位相减法求和,注意对于“错位”的理解.【详解】解:(1)由,得,则∴,∴数列的通项公式为.(2)由,∴,①,②①②,得,∴.【点睛】本题考查等比数列通项和求和,难度较易.对于等差乘以等比的形式的数列,求和注意选用错位相减法.20、(1);(2)证明见解析.【解析】
(1)讨论点的位置,根据直线的方程,直线的方程分别与直线方程联立,得出的坐标,进而得出圆心坐标以及半径,即可得出该圆的方程;(2)讨论点的位置,根据直角三角形的边角关系得出的坐标,进而得出圆心坐标以及半径,再由圆的弦长公式化简即可证明.【详解】(1)由圆的方程可知,①当点在第一象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为②当点在第四象限时,如下图所示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于2024年度云计算技术的数据存储与处理服务合同
- 推广劳务协议书
- 2024版工程设计居间培训合同2篇
- 离婚协议书范本2024年下载
- 链球菌课件教学课件
- 租房合同图片2篇
- 2024年度高级医疗设备工程师聘用合同3篇
- 2024年度技术开发合作与咨询费用支付合同
- 充电桩合作协议
- 年度安保服务外包合同(2024版)-门卫临时用工部分
- 《让小车运动起来》(说课稿)-2024-2025学年四年级上册科学教科版
- DB44-T+2537-2024小型水电站退役导则
- 肠道健康与全身健康的关系
- 招聘助理招聘面试题及回答建议(某大型国企)
- 江苏省南通市如皋市十四校联考2024-2025学年高三上学期教学质量调研(二)数学试题(含解析)
- 2024年初中七年级英语上册单元写作范文(新人教版)
- 新编苏教版一年级科学上册实验报告册(典藏版)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 2023年甘肃白银有色集团股份有限公司招聘考试真题
- 人教部编版七年级语文上册《阅读综合实践》示范课教学设计
- 企业信息化管理体系标准化建设方案
评论
0/150
提交评论