河北省三河市第三中学2025届高一下数学期末监测试题含解析_第1页
河北省三河市第三中学2025届高一下数学期末监测试题含解析_第2页
河北省三河市第三中学2025届高一下数学期末监测试题含解析_第3页
河北省三河市第三中学2025届高一下数学期末监测试题含解析_第4页
河北省三河市第三中学2025届高一下数学期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省三河市第三中学2025届高一下数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若实数x,y满足x2y2A.4,8 B.8,+2.根据频数分布表,可以估计在这堆苹果中,质量大于130克的苹果数约占苹果总数的()分组频数13462A. B. C. D.3.把函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把所得曲线向右平移个单位长度,最后所得曲线的一条对称轴是()A. B. C. D.4.已知函数,其函数图像的一个对称中心是,则该函数的单调递增区间可以是()A. B. C. D.5.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形6.把十进制数化为二进制数为A. B.C. D.7.数列,…的一个通项公式是()A.B.C.D.8.在中,内角的对边分别为,若,那么()A. B. C. D.9.若,则下列结论中:(1);(2);(3)若,则;(4)若,则的最小值为.其中正确结论的个数为()A.1 B.2 C.3 D.410.已知,且,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若与共线,则实数________.12.已知平面向量,,满足:,且,则的最小值为____.13.已知为的三个内角A,B,C的对边,向量,.若,且,则B=14.若,其中是第二象限角,则____.15.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.16.已知,,,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.数列中,,(为常数).(1)若,,成等差数列,求的值;(2)是否存在,使得为等比数列?并说明理由.18.已知向量与不共线,且,.(1)若与的夹角为,求;(2)若向量与互相垂直,求的值.19.已知关于的不等式.(1)若不等式的解集为,求实数的值;(2)若不等式的解集为,求实数的取值范围.20.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到下表数据:单价(元)销量(件)且,,(1)已知与具有线性相关关系,求出关于回归直线方程;(2)解释回归直线方程中的含义并预测当单价为元时其销量为多少?21.已知函数是指数函数.(1)求的表达式;(2)判断的奇偶性,并加以证明(3)解不等式:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

利用基本不等式得x2y2【详解】∵x2y2≤(x2+y2)24∴x2故选A.【点睛】本题考查基本不等式求最值问题,解题关键是掌握基本不等式的变形应用:ab≤(a+b)2、C【解析】

根据频数分布表计算出质量大于130克的苹果的频率,由此得出正确选项.【详解】根据频数分布表可知,所以质量大于克的苹果数约占苹果总数的.故选:C【点睛】本小题主要考查频数分析表的阅读与应用,属于基础题.3、A【解析】

先求出图像变换最后得到的解析式,再求函数图像的对称轴方程.【详解】由题得图像变换最后得到的解析式为,令,令k=-1,所以.故选A【点睛】本题主要考查三角函数图像变换和三角函数图像对称轴的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.4、D【解析】

根据对称中心,结合的范围可求得,从而得到函数解析式;将所给区间代入求得的范围,与的单调区间进行对应可得到结果.【详解】为函数的对称中心,解得:,当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时不单调,错误;当时,,此时单调递增,正确本题正确选项:【点睛】本题考查正切型函数单调区间的求解问题,涉及到利用正切函数的对称中心求解函数解析式;关键是能够采用整体对应的方式,将正切型函数与正切函数进行对应,从而求得结果.5、D【解析】略6、C【解析】选C.7、D【解析】试题分析:由题意得,可采用验证法,分别令,即可作出选择,只有满足题意,故选D.考点:归纳数列的通项公式.8、B【解析】

化简,再利用余弦定理求解即可.【详解】.故.又,故.故选:B【点睛】本题主要考查了余弦定理求解三角形的问题,属于基础题.9、B【解析】

利用函数知识、换元法、绝对值不等式等知识,对选项进行一一推理证明,即可得答案.【详解】对(1),,∴或,∵或,∴原不等式成立,故(1)正确;对(2),∵,故(2)正确;对(3),令,则,显然不成立,故(3)错误;对(4),∵,∴,当时,,∴的最小值为显然不成立,故(4)错误.故选:B.【点睛】本题考查函数与不等式的知识,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意消元法、换元法的使用.10、C【解析】

根据同角三角函数的基本关系及两角和差的正弦公式计算可得.【详解】解:因为,.因为,所以.因为,,所以.所以.故选:【点睛】本题考查同角三角函数的基本关系,两角和差的正弦公式,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据平面向量的共线定理与坐标表示,列方程求出x的值.【详解】向量(3,﹣1),(x,2),若与共线,则3×2﹣(﹣1)•x=0,解得x=﹣1.故答案为﹣1.【点睛】本题考查了平面向量的共线定理与坐标表示的应用问题,是基础题.12、-1【解析】

,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【点睛】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.13、【解析】

根据得,再利用正弦定理得,化简得出角的大小。再根据三角形内角和即可得B.【详解】根据题意,由正弦定理可得则所以答案为。【点睛】本题主要考查向量与三角形正余弦定理的综合应用,属于基础题。14、【解析】

首先要用诱导公式得到角的正弦值,根据角是第二象限的角得到角的余弦值,再用诱导公式即可得到结果.【详解】解:,又是第二象限角故,故答案为.【点睛】本题考查同角的三角函数的关系,本题解题的关键是诱导公式的应用,熟练应用诱导公式是解决三角函数问题的必备技能,属于基础题.15、4【解析】

由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.16、8【解析】由题意可得:则的最小值为.当且仅当时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)p=1;(Ⅱ)存在实数,使得{an}为等比数列【解析】

(Ⅰ)由已知求得a1,a4,再由-a1,,a4成等差数列列式求p的值;(Ⅱ)假设存在p,使得{an}为等比数列,可得,求解p值,验证得答案.【详解】(Ⅰ)由a1=1,,得,,则,,,.由,,a4成等差数列,得a1=a4-a1,即,解得:p=1;(Ⅱ)假设存在p,使得{an}为等比数列,则,即,则1p=p+1,即p=1.此时,,∴,而,又,所以,而,且,∴存在实数,使得{an}为以1为首项,以1为公比的等比数列.【点睛】本题考查数列递推式,考查等差数列与等比数列的性质,是中档题.18、(1)(2)【解析】

(1)根据平面向量的数量积即可解决.(2)根据两个向量垂直,数量积为0即可解决.【详解】解:(1)(2)由题意可得:,即,,

.【点睛】本题主要考查了平面向量的数量积,及两个向量垂直时数量积为0的情况,属于基础题.19、(1)(2)【解析】

(1)不等式的解集为说明和1是的两个实数根,运用韦达定理,可以求出实数的值;(2)不等式的解集为,只需,或即可,解不等式组求出实数的取值范围.【详解】(1)若关于的不等式的解集为,则和1是的两个实数根,由韦达定理可得,求得.(2)若关于的不等式解集为,则,或,求得或,故实数的取值范围为.【点睛】本题考查了已知一元二次不等式的解集求参问题,考查了数学运算能力20、(1);(2)销量为件.【解析】

(1)利用最小二乘法的公式求得与的值,即可求出线性回归方程;(2)的含义是单价每增加1元,该产品的销量将减少7件;在(1)中求得的回归方程中,取求得值,即可得到单价为12元时的销量.【详解】(1)由题意得:,,,,关于回归直线方程为;(2)的含义是单价每增加元,该产品的销量将减少件;当时,,即当单价为元时预测其销量为件.【点睛】本题主要考查线性回归方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论