2025届福建省泉州市洛江区马甲中学高一下数学期末监测试题含解析_第1页
2025届福建省泉州市洛江区马甲中学高一下数学期末监测试题含解析_第2页
2025届福建省泉州市洛江区马甲中学高一下数学期末监测试题含解析_第3页
2025届福建省泉州市洛江区马甲中学高一下数学期末监测试题含解析_第4页
2025届福建省泉州市洛江区马甲中学高一下数学期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届福建省泉州市洛江区马甲中学高一下数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线的倾斜角为()A.30° B.60° C.120° D.150°2.设的内角A,B,C所对的边分别为a,b,c.若,,则角()A. B. C. D.3.已知数列、、、、,可猜想此数列的通项公式是().A. B.C. D.4.已知,则等于()A. B. C. D.35.在中,若,,,则角的大小为()A.30° B.45°或135° C.60° D.135°6.下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是()A. B.C. D.7.直线与圆相交于点,则()A. B. C. D.8.已知函数,若方程有5个解,则的取值范围是()A. B. C. D.9.已知,若、、三点共线,则为()A. B. C. D.210.已知数列是等差数列,,则(

)A.36 B.30 C.24

D.1二、填空题:本大题共6小题,每小题5分,共30分。11.按照如图所示的程序框图,若输入的x值依次为,0,1,运行后,输出的y值依次为,,,则________.12.方程,的解集是__________.13.如图,在中,,是边上一点,,则.14.如图,圆锥型容器内盛有水,水深,水面直径放入一个铁球后,水恰好把铁球淹没,则该铁球的体积为________15.已知直线平分圆的周长,则实数________.16.点从点出发,沿单位圆顺时针方向运动弧长到达点,则点的坐标为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设是正项等比数列的前项和,已知,(1)求数列的通项公式;(2)令,求数列的前项和.18.已知,其中,,.(1)求的单调递增区间;(2)在中,角,,所对的边分别为,,,,,且向量与共线,求边长和的值.19.已知等比数列的前n项和为,,且.(1)求数列的通项公式;(2)若数列为递增数列,数列满足,求数列的前n项和.(3)在条件(2)下,若不等式对任意正整数n都成立,求的取值范围.20.已知为的三内角,且其对边分别为.且(1)求的值;(2)若,三角形面积,求的值.21.已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在上有局部对称点,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由直线方程得到直线斜率,进而得到其倾斜角.【详解】因直线方程为,所以直线的斜率,故其倾斜角为150°.故选D【点睛】本题主要考查求直线的倾斜角,熟记定义即可,属于基础题型.2、B【解析】

根据正弦定理,可得,进而可求,再利用余弦定理,即可得结果.【详解】,∴由正弦定理,可得3b=5a,,,,,故选:B.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2).3、D【解析】

利用赋值法逐项排除可得出结果.【详解】对于A选项,,不合乎题意;对于B选项,,不合乎题意;对于C选项,,不合乎题意;对于D选项,当为奇数时,,此时,当为偶数时,,此时,合乎题意.故选:D.【点睛】本题考查利用观察法求数列的通项,考查推理能力,属于中等题.4、C【解析】

等式分子分母同时除以即可得解.【详解】由可得.故选:C.【点睛】本题考查了三角函数商数关系的应用,属于基础题.5、B【解析】

利用正弦定理得到答案.【详解】在中正弦定理:或故答案选B【点睛】本题考查了正弦定理,属于简单题.6、C【解析】

根据周期公式排除A选项;根据正弦函数的单调性,排除B选项;将代入函数解析式,排除D选项;根据周期公式,将代入函数解析式,余弦函数的单调性判断C选项正确.【详解】对于A项,,故A错误;对于B项,,,函数在上单调递增,则函数在上单调递增,故B错误;对于C项,;当时,,则其图象关于点对称;当,,函数在区间上单调递减,则函数在区间单调递减,故C正确;对于D项,当时,,故D错误;故选:C【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题.7、D【解析】

利用直线与圆相交的性质可知,要求,只要求解圆心到直线的距离.【详解】由题意圆,可得圆心,半径,圆心到直线的距离.则由圆的性质可得,所以.故选:D【点睛】本题考查了求弦长、圆的性质,同时考查了点到直线的距离公式,属于基础题.8、D【解析】

利用因式分解法,求出方程的解,结合函数的性质,根据题意可以求出的取值范围.【详解】,,或,由题意可知:,由题可知:当时,有2个解且有2个解且,当时,,因为,所以函数是偶函数,当时,函数是减函数,故有,函数是偶函数,所以图象关于纵轴对称,即当时有,,所以,综上所述;的取值范围是,故本题选D.【点睛】本题考查了已知方程解的情况求参数取值问题,正确分析函数的性质,是解题的关键.9、C【解析】

由平面向量中的三点共线问题可得:,由基本定理及线性运算可得:即得解.【详解】因为,若,,三点共线则,解得,即即即即故选:【点睛】本题考查平面向量基本定理和共线定理,属于基础题.10、B【解析】

通过等差中项的性质即可得到答案.【详解】由于,故,故选B.【点睛】本题主要考查等差数列的性质,难度较小.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

根据程序框图依次计算出、、后即可得解.【详解】由程序框图可知,;,;,.所以.故答案为:.【点睛】本题考查了程序框图的应用,属于基础题.12、【解析】

用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.13、【解析】

由图及题意得

=

=(

)(

)=

+

=

=

.14、【解析】

通过将图形转化为平面图形,然后利用放球前后体积等量关系求得球的体积.【详解】作出相关图形,显然,因此,因此放球前,球O与边相切于点M,故,则,所以,,所以放球后,而,而,解得.【点睛】本题主要考查圆锥体积与球体积的相关计算,建立体积等量关系是解决本题的关键,意在考查学生的划归能力,计算能力和分析能力.15、1【解析】

由题得圆心在直线上,解方程即得解.【详解】由题得圆心(1,a)在直线上,所以.故答案为1【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解析】

由题意可得OQ恰好是角的终边,利用任意角的三角函数的定义,求得Q点的坐标.【详解】点P从点出发,沿单位圆顺时针方向运动弧长到达Q点,则OQ恰好是角的终边,故Q点的横坐标,纵坐标为,故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于容易题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)设正项等比数列的公比为,当时,可验证出,可知;根据可构造方程求得,进而根据等比数列通项公式可求得结果;(2)由(1)可得,采用错位相减法即可求得结果.【详解】(1)设正项等比数列的公比为当时,,解得:,不合题意由得:,又整理得:,即,解得:(2)由(1)得:…①则…②①②得:【点睛】本题考查等比数列通项公式的求解、错位相减法求解数列的前项和;关键是能够得到数列的通项公式后,根据等差乘以等比的形式确定采用错位相减法求得结果,对学生的计算和求解能力有一定要求.18、(1);(2).【解析】试题分析:(1)化简得,代入,求得增区间为;(2)由求得,余弦定理得.因为向量与共线,所以,由正弦定理得,解得.试题解析:(1)由题意知,,在上单调递增,令,得,的单调递增区间.(2),又,即.,由余弦定理得.因为向量与共线,所以,由正弦定理得.考点:三角函数恒等变形、解三角形.19、(1)当时:;当时:(2)(3)【解析】

(1)直接利用等比数列公式得到答案.(2)利用错位相减法得到答案.(3)将不等式转化为,根据双勾函数求数列的最大值得到答案.【详解】(1)当时:当时:(2)数列为递增数列,,两式相加,化简得到(3)设原式(为奇数)根据双勾函数知:或时有最大值.时,原式时,原式故【点睛】本题考查了等比数列的通项公式,错位相减法求前N项和,恒成立问题,将恒成立问题转化为利用双勾函数求数列的最大值是解题的关键,此题综合性强,计算量大,意在考查学生对于数列公式方法的灵活运用.20、(1);(2)【解析】

(1)利用正弦定理化简,并用三角形内角和定理以及两角和的正弦公式化简,求得,由此求得的大小.(2)利用三角形的面积公式求得,利用余弦定理列方程,化简求得的值.【详解】解:(1),得:∵∴,即∵,∴,∵,∴(2)由(1)有,又由余弦定理得:又,,所以【点睛】本小题主要考查三角形的面积公式,考查正弦定理、余弦定理解三角形,考查运算求解能力,属于中档题.21、(1)见解析;(2);(3)【解析】

试题分析:(1)利用题中所给的定义,通过二次函数的判别式大于0,证明二次函数有局部对称点;(2)利用方程有解,通过换元,转化为打钩函数有解问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论