广西壮族自治区普通高中2025届高一数学第二学期期末学业水平测试试题含解析_第1页
广西壮族自治区普通高中2025届高一数学第二学期期末学业水平测试试题含解析_第2页
广西壮族自治区普通高中2025届高一数学第二学期期末学业水平测试试题含解析_第3页
广西壮族自治区普通高中2025届高一数学第二学期期末学业水平测试试题含解析_第4页
广西壮族自治区普通高中2025届高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区普通高中2025届高一数学第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中,,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰直角三角形2.设变量、满足约束条件,则目标函数的最大值为()A.2 B.3 C.4 D.93.在△ABC中,N是AC边上一点,且=,P是BN上的一点,若=m+,则实数m的值为()A. B. C.1 D.34.已知数列的通项公式为,则72是这个数列的()A.第7项 B.第8项 C.第9项 D.第10项5.若,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则6.正方体中,异面直线与BC所成角的大小为()A. B. C. D.7.已知数列满足,则()A.2 B. C. D.8.如图所示的图形是弧三角形,又叫莱洛三角形,它是分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧得到的封闭图形.在此图形内随机取一点,则此点取自等边三角形内的概率是()A.32π-3 B.34π-239.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若则 B.若,,则C.若,,则 D.若,,则10.已知a,,若关于x的不等式的解集为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的最大值为______.12.方程的解集是__________.13.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.14.若数列满足(,为常数),则称数列为“调和数列”,已知正项数列为“调和数列”,且,则的最大值是__________.15.向量满足,,则向量的夹角的余弦值为_____.16.如图所示,分别以为圆心,在内作半径为2的三个扇形,在内任取一点,如果点落在这三个扇形内的概率为,那么图中阴影部分的面积是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.解关于的方程:18.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.19.正方体的棱长为点分别是棱的中点(1)证明:四边形是一个梯形:(2)求几何体的表面积和体积20.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.21.某种笔记本的单价是5元,买个笔记本需要y元,试用函数的三种表示法表示函数.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由平面向量数量积运算可得,即,得解.【详解】解:在中,,则,即,则为钝角,所以为钝角三角形,故选:C.【点睛】本题考查了平面向量数量积运算,重点考查了向量的夹角,属基础题.2、D【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件的可行域,如图,画出可行域,,,,平移直线,由图可知,直线经过时目标函数有最大值,的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3、B【解析】

根据向量的线性表示逐步代换掉不需要的向量求解.【详解】设,所以所以故选B.【点睛】本题考查向量的线性运算,属于基础题.4、B【解析】

根据数列的通项公式,令,求得的值,即可得到答案.【详解】由题意,数列的通项公式为,令,即,解得或(不合题意),所以是数列的第8项,故选B.【点睛】本题主要考查了数列的通项公式的应用,着重考查了运算与求解能力,属于基础题.5、D【解析】

根据不等式的基本性质逐一判断可得答案.【详解】解:A.当时,不成立,故A不正确;B.取,,则结论不成立,故B不正确;C.当时,结论不成立,故C不正确;D.若,则,故D正确.故选:D.【点睛】本题主要考查不等式的基本性质,属于基础题.6、D【解析】

利用异面直线与BC所成角的的定义,平移直线,即可得答案.【详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.7、B【解析】

利用数列的递推关系式,逐步求解数列的即可.【详解】解:数列满足,,所以,.故选:B.【点睛】本题主要考查数列的递推关系式的应用,属于基础题.8、D【解析】

求出以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积,根据图形的性质,可知它的3倍减去2倍的等边三角形ABC【详解】设等边三角形ABC的边长为a,设以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积为S1,则S1=莱洛三角形面积为S,则S=3S在此图形内随机取一点,则此点取自等边三角形内的概率为P,P=S【点睛】本题考查了几何概型.解决本题的关键是正确求出莱洛三角形的面积.考查了运算能力.9、B【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系.10、D【解析】

由不等式的解集为R,得的图象要开口向上,且判别式,即可得到本题答案.【详解】由不等式的解集为R,得函数的图象要满足开口向上,且与x轴至多有一个交点,即判别式.故选:D【点睛】本题主要考查一元二次不等式恒成立问题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

由余弦型函数的值域可求得整个函数的值域,进而得到最大值.【详解】,即故答案为:【点睛】本题考查含余弦型函数的值域的求解问题,关键是明确在自变量无范围限制时,余弦型函数的值域为.12、【解析】

令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.13、【解析】

列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【详解】所有的基本事件有:、、、、、、、、、,共个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:、、,共个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为,故答案为.【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.14、1【解析】因为数列是“调和数列”,所以,即数列是等差数列,所以,,所以,,当且仅当时等号成立,因此的最大值为1.点睛:本题考查创新意识,关键是对新定义的理解与转化,由“调和数列”的定义及已知是“调和数列”,得数列是等差数列,从而利用等差数列的性质可化简已知数列的和,结合基本不等式求得最值.本题难度不大,但考查的知识较多,要熟练掌握各方面的知识与方法,才能正确求解.15、【解析】

通过向量的垂直关系,结合向量的数量积求解向量的夹角的余弦值.【详解】向量,满足,,可得:,,向量的夹角为,所以.故答案为.【点睛】本题考查向量的数量积的应用,向量的夹角的余弦函数值的求法.考查计算能力.属于基础题.16、【解析】

先求出三块扇形的面积,再由概率计算公式求出的面积,进而求出阴影部分的面积.【详解】∵,∴三块扇形的面积为:,设的面积为,∵在内任取一点,点落在这三个扇形内的概率为,,∴图中阴影部分的面积为:,故答案为:.【点睛】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

根据方程解出或,利用三角函数的定义解出,再根据终边相同角的表示即可求出.【详解】由,得,所以或,所以或,所以的解集为:.【点睛】本题考查了三角方程的解法,终边相同角的表示,反三角函数的定义,考查计算能力,属于基础题.18、(1)见解析(2)【解析】

(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,,设,则,,,则,因此,异面直线和所成角的余弦值为.【点睛】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了异面直线所成角的求法,是中档题.19、(1)证明见解析(2)表面积为,体积为【解析】

(1)在正方体中,根据分别是棱的中点,由中位线得到且,又由,根据公理4平行关系的传递性得证.(2)几何体的表面积,上下底是直角三角形,三个侧面,有两个是全等的直角梯形,另一个是等腰梯形求解,体积按照棱台体积公式求解.【详解】(1)如图所示:在正方体中,因为分别是棱的中点,所以且,又因为,所以且,所以四边形是一个梯形.(2)几何体的表面积为:.体积为:.【点睛】本题主要考查几何体中的截面问题,还考查了空间想象,抽象概括,推理论证的能力,属于中档题.20、(1),;(2).【解析】

(1)由函数的图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式.(2)利用正弦函数的单调性求得f(x)的单调递增区间.【详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线,故最大值A=4,且,∴,∴ω=1.所以.因为的图象经过点,所以,所以,.因为,所以,所以.(2)因为,所以,,所以,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论