




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-2024学年龙岩市上杭县高二数学(下)期末训练卷一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。1.如图,在四面体OABC中,OA=a, OB=b,OC=c,点M在OA上,且OM=2MA,N为BC的中点,则MN等于
(
)
A.12C. 12a+2.已知某厂甲、乙两车间生产同一批衣架,且甲、乙两车间的产量分别占全厂产量的,,甲、乙车间的优品率分别为.现从该厂这批产品中任取一件,则取到优品的概率为(
)A. B. C. D.3.如图,在棱长为3的正方体ABCD−A1B1C1D1中,点E是棱CD上的一点,且DE=2EC,则点BA.6147 B.31474.已知离散型随机变量X的分布列如下表:X0123P11a1若离散型随机变量Y=2X+1,则P(Y≥3)=(
)A.13 B.12 C.235.若不等式(a−b)2+(a−lnb)2≥m对任意a∈RA.(−∞,12] B.(−∞,226.盒中有2个红球,3个黑球,2个白球,从中随机地取出一个球,观察其颜色后放回,并加入同色球1个,再从盒中抽取一球,则第二次抽出的是红球的概率是(
)A.27 B.728 C.377.若函数fx=x−2x−alnxA.22,+∞ B.−∞,−22 8.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名.由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a>0,都有P(ξ≥a)≤E(ξ)a.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A,其概率为P(A).则P(A)的最大值为(
)A.271000 B.2431000 C.427二、多选题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。9.已知过点Aa,0作曲线y=1+xex的切线有且仅有1条,则a的可能取值为A.−5 B.−3 C.−1 D.110.如图,棱长为2的正方体ABCD−A1B1C1D1中,E,F分别为棱A1D1,AA1的中点,G为面对角线B1C上的动点,则(
)
A.三棱锥A1−EFG的体积为定值
B.存在点G,使得B1D⊥平面EFG
C.G11.已知函数f(x)=e2x−ax2(a为常数A.a=1时,f(x)≥0恒成立
B.若f(x)有3个零点,则a的取值范围为(e2,+∞)
C.a=12时.f(x)有唯一零点x0且−1<x0三、填空题:本题共3小题,每小题5分,共15分。12.设随机变量ξ∼B(2,p),η∼B(4,p),若E(ξ)=23,则P(η≥3)=
.13.若随机事件A在一次试验中发生的概率为p(0<p<1),用随机变量ξ表示A在一次试验发生的次数,则4Dξ−1Eξ的最大值为14.已知函数fx=xlnx+mex有两个极值点,则实数参考答案一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求的。1.【答案】B
解:MN=MA+AB+BN=13OA+OB−OA+12BC,2.A【分析】根据全概率公式,结合已知条件,即可求得结果.【详解】设分别表示产品由甲、乙车间生产;表示产品为优品,由题可得:,故.故选:A.3.【答案】B
解:以A为坐标原点,AB,AD,AA1所在的直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示,
所以A(0,0,0),B1(3,0,3),
E(2,3,0),C1(3,3,3),所以AE=(2,3,0),AC1=(3,3,3).
设平面AEC1的法向量n=(x,y,z),
所以n⋅AE=2x+3y=0,n⋅AC1=3x+3y+3z=0,
令x=3,解得y=−2,z=−1,
4.【答案】C
解:根据随机变量X的概率分布列知,
13+112+a+16=1,
解得:5.【答案】B
解:设T=(a−b)2+(a−lnb)2,则T的几何意义是直线y=x上的点P(a,a)与曲线f(x)=lnx上的点Q(b,lnb)的距离,将直线y=x平移到与面线f(x)=lnx相切时,切点Q到直线y=x的距离最小.
而f'(x)=1x,令f'(x0)=1x6.【答案】A
解:第一次从盒中任取1球,是红球记为A1,黑球记为A2,白球记为则A1,A2,A3则P(A1)=27,P(A2)=3P(B)=P(B|A1故选A.7.【答案】A
解:因为fx所以f'(x)=1+2x2−ax<0在(0,+∞)令g(x)=2x+xx>0,则g'(x)=−2x2+1,当0<x<2时,当x>2时,所以g(x)min=g2故选:A.8.【答案】B
解:设ξ为某市去年1名市民的年收入,
某市去年的人均年收入为10万元,则Eξ=10,
设1名市民去年的年收入超过100万元的概率为p,则
所以p=P(ξ>100)⩽E(ξ)100=110,
由题可得PA=C31p×1−p2=3p1−p2,
设fp=3p1−p2,0<p⩽110二、多选题:本题共3小题,每小题6分,共18分。在每小题给出的选项中,有多个选项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。9.【答案】AC
解:设切点为(x0,y0),则y0=(1+x0)直线过点Aa,0,则−1+x0e因为切线有且仅有1条,即Δ=a−12+42a+1=0,
化简得a2+6a+5=0故选:AC.10.【答案】ABD
解:对于A:VA1−EFG=VG−A1EF,底面面积为定值12,G到平面A1EF距离是定值2,所以体积为定值13,故A正确;
对于B:以DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设CG=λCB1,0≤λ≤1,
则B(2,2,0),D(0,0,0),C1(0,2,2),F(2,0,1),E(1,0,2),G(2λ,2,2λ),B1(2,2,2)
设平面EFG的一个法向量n=(x,y,z),EF=(1,0,−1),EG=(2λ−1,2,2λ−2),
n·EF=0,n·EG=0,x−z=0,(2λ−1)x+2y+(2λ−2)z=0,
可取n=(1,32−2λ,1),B1D=−2,−2,−2,若B1D⊥平面EFG,则B1D//n,所以1−2=32−2λ−2,得λ=14,即存在点G,使得B1D⊥平面EFG,故B正确;
对于C:EG=(2λ−1,2,2λ−2),BC1=(−2,0,2)11.【答案】BCD
【解答】解:对于A项,
a=1时,
f(−1)=1e2−1<0,故A错误;
对于B项,令
g(x)=f(x)e2x=1−ax2e2x,则函数
f(x)与
g(x)的零点相同,当
a⩽0时,
g(x)>0无零点;当
a>0时,
g'(x)=2ax(x−1)e2x,令
g'(x)>0⇒x<0或
x>1,
g'(x)<0⇒0<x<1,即
g(x)在
(−∞,0)和
(1,+∞)上单调递增,在
(0,1)上单调递减,当
x→−∞时,
g(x)<0,当
x→+∞时,
g(x)>0,要使得
g(x)有3个零点,则
g(0)>0g(1)<0
⇒
1>01−ae2<0,解得
a>e2,故B正确;
对于减,
g(−1)=1−e22<0,g(−12)=1−e8>0,
g(1)=1−12e2>0,由零点存在性定理可知,
g(x)只有一个零点
x0,且
−1<x0<−12,则
f(x)只有一个零点
x0,且
−1<x0<−12,故C正确;
对于D项,
a=e2,
f'(x)=2e2x−2e2x=2e2x−e2x,
x=1时,f'(1)=0
,令ℎ(x)=三、填空题:本题共3小题,每小题5分,共15分。12.【答案】19解:
∵ξ~B(2,p),E(ξ)=23,所以2p=23,p=13,
所以η∼B(4,113.【答案】0
解:随机变量ξ的所有可能取值为0,1,
并且有P(ξ=1)=p,P(ξ=0)=1−p,
从而E(ξ)=0×(1−p)+1×p=p,
D(ξ)=(0−p)2×(1−p)+(1−p)2×p=p−p2,
4Dξ−1Eξ=4(p−p2)−1p=4−(4p+1p),
∵0<p<1,
∴4p+14.【答案】(
−1e
,解:因为
fx=xlnx+mex
,所以
f'x=1+lnx+mex
,
令
f'x=0
,得
−m=1+lnxex
,要使函数
fx=xlnx+mex
有两个极值点,
只需
−m=1+lnxex
有两个不同根,从而函数
gx=1+lnxex
与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度房地产项目工程进度款支付承诺书
- 二零二五年门卫室承包与应急救援服务合同
- 二零二五年度车辆租赁管理培训合同
- 二零二五年度城市绿化工程分包合同协议
- 2025版DJ录音棚艺人聘用及版权共享合同
- 2025年房地产买卖合同范本:含房地产交易资金监管与支付
- 二零二五年多用途发电机租赁及租赁期限灵活协议
- 2025版企业内部审计顾问服务协议样本
- 2025年度食品饮料购销合同回款期调整方案
- 二零二五版汽车销售退换货处理合同模板
- GB/T 43657.2-2024工业车辆能效试验方法第2部分:操作者控制的自行式车辆、牵引车和载运车
- 《反洗钱基础知识》课件
- 培训餐饮住宿服务投标方案(技术标)
- 2023-2024学年江苏省泰州市联盟五校高二上学期期中考试 数学试卷(含答案详解)
- 中俄公司治理模式对比研究
- 工程量清单及招标控制价编制、审核入库类服务方案
- 工程量审核申报表
- 公共厕所新建工程施工组织设计投标方案
- 医疗设备采购计划申请论证表(空)
- 水土保持防治工真题模拟汇编(共508题)
- WD-1500机组故障处理指导手册
评论
0/150
提交评论