河北省重点中学2024年高一数学第二学期期末质量跟踪监视模拟试题含解析_第1页
河北省重点中学2024年高一数学第二学期期末质量跟踪监视模拟试题含解析_第2页
河北省重点中学2024年高一数学第二学期期末质量跟踪监视模拟试题含解析_第3页
河北省重点中学2024年高一数学第二学期期末质量跟踪监视模拟试题含解析_第4页
河北省重点中学2024年高一数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省重点中学2024年高一数学第二学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,某船在A处看见灯塔P在南偏东方向,后来船沿南偏东的方向航行30km后,到达B处,看见灯塔P在船的西偏北方向,则这时船与灯塔的距离是:A.10kmB.20kmC.D.2.在中,已知,则的面积为()A. B. C. D.3.若向量=,||=2,若·(-)=2,则向量与的夹角()A. B. C. D.4.已知数列满足,,则的值为()A. B. C. D.5.如果点位于第四象限,则角是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角6.已知直线yx+2,则其倾斜角为()A.60° B.120° C.60°或120° D.150°7.设,则下列不等式中正确的是()A. B.C. D.8.在△ABC中,,,.的值为()A. B. C. D.9.已知且,则为()A. B. C. D.10.如图所示,在ΔABC,已知∠A:∠B=1:2,角C的平分线CD把三角形面积分为3:2两部分,则cosAA.13 B.12 C.3二、填空题:本大题共6小题,每小题5分,共30分。11.已知正三棱柱木块,其中,,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.12.已知函数fx=cosx+2cosx,13.圆与圆的公共弦长为________.14.棱长为,各面都为等边三角形的四面体内有一点,由点向各面作垂线,垂线段的长度分别为,则=______.15.已知点及其关于原点的对称点均在不等式表示的平面区域内,则实数的取值范围是____.16.cos2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中.(1)若函数在区间内有一个零点,求的取值范围;(2)若函数在区间上的最大值与最小值之差为2,且,求的取值范围.18.甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价.19.已知数列中,,.(1)求数列的通项公式:(2)设,求数列的通项公式及其前项和.20.在中,角A,B,C的对边分别为a,b,c,已知.(1)求角B的大小;(2)若,,求的面积.21.设数列为等比数列,且,,(1)求数列的通项公式:(2)设,数列的前项和,求证:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

在中,利用正弦定理求出得长,即为这时船与灯塔的距离,即可得到答案.【详解】由题意,可得,即,在中,利用正弦定理得,即这时船与灯塔的距离是,故选C.【点睛】本题主要考查了正弦定理,等腰三角形的判定与性质,以及特殊角的三角函数值的应用,其中熟练掌握正弦定理是解答本题的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】

根据三角形的面积公式求解即可.【详解】的面积.

故选:B【点睛】本题主要考查了三角形的面积公式,属于基础题.3、A【解析】

根据向量的数量积运算,向量的夹角公式可以求得.【详解】由已知可得:,得,设向量与的夹角为,则所以向量与的夹角为故选A.【点睛】本题考查向量的数量积运算和夹角公式,属于基础题.4、B【解析】

由,得,然后根据递推公式逐项计算出、的值,即可得出的值.【详解】,,则,,,因此,,故选B.【点睛】本题考查数列中相关项的计算,解题的关键就是递推公式的应用,考查计算能力,属于基础题.5、C【解析】

由点位于第四象限列不等式,即可判断的正负,问题得解.【详解】因为点位于第四象限所以,所以所以角是第三象限角故选C【点睛】本题主要考查了点的坐标与点的位置的关系,还考查了等价转化思想及三角函数值的正负与角的终边的关系,属于基础题.6、B【解析】

根据直线方程求出斜率,根据斜率和倾斜角之间的关系即可求出倾斜角.【详解】由已知得直线的斜率,则倾斜角为120°,故选:B.【点睛】本题考查斜率和倾斜角的关系,是基础题.7、B【解析】

取,则,,只有B符合.故选B.考点:基本不等式.8、B【解析】

由正弦定理列方程求解。【详解】由正弦定理可得:,所以,解得:.故选:B【点睛】本题主要考查了正弦定理,属于基础题。9、B【解析】由题意得,因为,即,所以,又,又,且,所以,故选B.10、C【解析】

由两个三角形的面积比,得到边ACCB=32,利用正弦定理【详解】∵角C的平分线CD,∴∠ACD=∠BCD∵S∴设AC=3x,CB=2x,∵∠A:∠B=1:2,设∠A=α,∠B=2α,在ΔABC中,利用正弦定理2xsin解得:cosα=【点睛】本题考查三角形面积公式、正弦定理在平面几何中的综合应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将正三棱柱的侧面沿棱展开成平面,连接与的交点即为满足最小时的点,可知点为棱的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱沿棱展开成平面,连接与的交点即为满足最小时的点.由于,,再结合棱柱的性质,可得,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,为的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:.故答案为:.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.12、(0,1)【解析】

画出函数f(x)在x∈0,2【详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【点睛】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.13、【解析】

先求出公共弦方程为,再求出弦心距后即可求解.【详解】两圆方程相减可得公共弦直线方程为,圆的圆心为,半径为,圆心到的距离为,公共弦长为.故答案为:.【点睛】本题考查了圆的一般方程以及直线与圆位置关系的应用,属于基础题.14、.【解析】

根据等积法可得∴15、【解析】

根据题意,设与关于原点的对称,分析可得的坐标,由二元一次不等式的几何意义可得,解可得的取值范围,即可得答案.【详解】根据题意,设与关于原点的对称,则的坐标为,若、均在不等式表示的平面区域内,则有,解可得:,即的取值范围为,;故答案为,.【点睛】本题考查二元一次不等式表示平面区域的问题,涉及不等式的解法,属于基础题.16、3【解析】由二倍角公式可得:cos2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)解方程的根,则根在区间内,即可求出的范围即可;(2)根据函数的单调性求出最大,最小,作差得,从而得到关于的不等式,解出即可.【详解】(1)由,得,由得:,所以的范围是.(2)在递增,,,,,由,得,,解得:.【点睛】本题考查对数函数的性质、函数的单调性、最值等问题,考查转化与化归思想,求解过程中要会灵活运用换元法进行问题解决.18、(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)由图象可得甲、乙两人五次测试的成绩分别为,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根据平均数,方差的公式代入计算得解(2)由可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.试题解析:(1)由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.=13,=13,×[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,×[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.19、(1)(2),【解析】

(1)利用累加法得到答案.(2)计算,利用裂项求和得到前项和.【详解】(1)由题意可知左右累加得.(2).【点睛】本题考查了数列的累加法,裂项求和法,是数列的常考题型.20、(1)(2)【解析】

(1)先利用正弦定理将已知等式化为,化简后再运用余弦定理可得角B;(2)由和余弦定理可得,面积为,将和的值代入面积公式即可.【详解】解:(1)由题,由正弦定理得:,即则所以.(2)因为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论