2023-2024学年四川省成都市实验中学高一数学第二学期期末教学质量检测试题含解析_第1页
2023-2024学年四川省成都市实验中学高一数学第二学期期末教学质量检测试题含解析_第2页
2023-2024学年四川省成都市实验中学高一数学第二学期期末教学质量检测试题含解析_第3页
2023-2024学年四川省成都市实验中学高一数学第二学期期末教学质量检测试题含解析_第4页
2023-2024学年四川省成都市实验中学高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年四川省成都市实验中学高一数学第二学期期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,内角,,的对边分别为,,,且=.则A. B. C. D.2.已知向量,.且,则()A.2 B. C. D.3.在△ABC中,A=60°,AB=2,且△ABC的面积为,则BC的长为().A. B.2 C. D.4.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升5.已知等差数列的前项和为,,,则使取得最大值时的值为()A.5 B.6 C.7 D.86.函数的最小正周期是()A. B. C. D.7.已知直线,若,则的值为()A.8 B.2 C. D.-28.使函数是偶函数,且在上是减函数的的一个值是()A. B. C. D.9.已知:,,若函数和有完全相同的对称轴,则不等式的解集是A. B.C. D.10.等比数列的各项均为正数,且,则()A.3 B.6 C.9 D.81二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,是与的等比中项,则最小值为_________.12.终边在轴上的角的集合是_____________________.13.若数列满足(),且,,__.14.函数的最小值为____________.15.在长方体中,,,,如图,建立空间直角坐标系,则该长方体的中心的坐标为_________.16.已知四面体的四个顶点均在球的表面上,为球的直径,,四面体的体积最大值为____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,三棱柱中,,D为AB上一点,且平面.(1)求证:;(2)若四边形是矩形,且平面平面ABC,直线与平面ABC所成角的正切值等于2,,,求三楼柱的体积.18.如图,在四棱锥中,底面为菱形,、、分别是棱、、的中点,且平面.(1)求证:平面;(2)求证:平面.19.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.20.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.21.如图,等腰梯形中,,,,取中点,连接,把三角形沿折起,使得点在底面上的射影落在上,设为的中点.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由正弦定理得,,由于,,,故答案为C.考点:正弦定理的应用.2、B【解析】

通过得到,再利用和差公式得到答案.【详解】向量,.且故答案为B【点睛】本题考查了向量平行,正切值的计算,意在考查学生的计算能力.3、D【解析】

利用三角形面积公式列出关系式,把,已知面积代入求出的长,再利用余弦定理即可求出的长.【详解】∵在中,,且的面积为,

∴,

解得:,

由余弦定理得:,

则.

故选D.【点睛】此题考查了余弦定理,三角形面积公式,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4、B【解析】

由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.5、D【解析】

由题意求得数列的通项公式为,令,解得,即可得到答案.【详解】由题意,根据等差数列的性质,可得,即又由,即,所以等差数列的公差为,又由,解得,所以数列的通项公式为,令,解得,所以使得取得最大值时的值为8,故选D.【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及前n项和最值问题,其中解答中熟记等差数列的性质和通项公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.6、C【解析】

将函数化为,再根据周期公式可得答案.【详解】因为=,所以最小正周期.故选:C【点睛】本题考查了两角和的正弦公式的逆用,考查了正弦型函数的周期公式,属于基础题.7、D【解析】

根据两条直线垂直,列方程求解即可.【详解】由题:直线相互垂直,所以,解得:.故选:D【点睛】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.8、B【解析】

先根据辅助角公式化简,再根据奇偶性及在在上是减函数为减函数即可算出的范围。【详解】由题意得:因为是偶函数,所以,又因为在的减区间为,,在上是减函数,所以当时满足,选B.【点睛】本题主要考查了三角函数的性质:奇偶性质、单调性以及辅助角公式。型为奇函数,为偶函数。其中辅助角公式为。属于中等题。9、B【解析】

,所以因此,选B.10、A【解析】

利用等比数列性质可求得,将所求式子利用对数运算法则和等比数列性质可化为,代入求得结果.【详解】且本题正确选项:【点睛】本题考查等比数列性质的应用,关键是灵活利用等比中项的性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

根据等比中项定义得出的关系,然后用“1”的代换转化为可用基本不等式求最小值.【详解】由题意,所以,所以,当且仅当,即时等号成立.所以最小值为1.故答案为:1.【点睛】本题考查等比中项的定义,考查用基本不等式求最值.解题关键是用“1”的代换找到定值,从而可用基本不等式求最值.12、【解析】

由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.13、1【解析】

由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】

将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【点睛】本题考查了换元法,以及函数的单调性,是基础题。15、【解析】

先求出点B的坐标,再求出M的坐标.【详解】由题得B(4,6,0),,因为M点是中点,所以点M坐标为.故答案为【点睛】本题主要考查空间坐标的求法,意在考查学生对该知识的理解掌握水平,属于基础题.16、2【解析】

为球的直径,可知与均为直角三角形,求出点到直线的距离为,可知点在球上的运动轨迹为小圆.【详解】如图所示,四面体内接于球,为球的直径,,,,过作于,,点在以为圆心,为半径的小圆上运动,当面面时,四面体的体积达到最大,.【点睛】立体几何中求最值问题,核心通过直观想象,找到几何体是如何变化的?本题求解的突破口在于找到点的运动轨迹,考查学生的空间想象能力和逻辑思维能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见详解;(2)【解析】

(1)连接交于点,连接,利用线面平行的性质定理可得,从而可得为的中点,进而可证出(2)利用面面垂直的性质定理可得平面,从而可得三棱柱为直三棱柱,在中,根据等腰三角形的性质可得,进而可得棱柱的高为,利用柱体的体积公式即可求解.【详解】(1)连接交于点,连接,如图:由平面,且平面平面,所以,由为的中点,所以为的中点,又,(2)由四边形是矩形,且平面平面ABC,所以平面,即三棱柱为直三棱柱,在中,,,,所以,因为直线与平面ABC所成角的正切值等于2,在中,,所以..【点睛】本题考查了线面平行的性质定理、面面垂直的性质定理,同时考查了线面角以及柱体的体积公式,属于基础题.18、(1)见解析;(2)见解析【解析】

(1)取中点,连接,,得,利用直线与平面平行的判定定理证明平面.(2)连结,由已知条件得,由平面,得,利用直线与平面垂直的判定定理证明平面.【详解】(1)取中点,连接,,∵、分别是棱、的中点,∴,且.∵在菱形中,是的中点,∴,且,∴且,∴为平行四边形.∴.∵平面,平面,∴平面.(2)连接,∵是菱形,∴,∵,分别是棱、的中点,∴,∴,∵平面,平面,∴,∵,、平面,∴平面.【点睛】本题考查直线与平面平行以及直线与平面垂直的判定定理的应用,考查学生分析解决问题的能力,属于中档题.19、(1)(2)【解析】

(1)由周期得,利用最低点坐标可得,得解析式;(2)直接求出零点,根据零点排列得出有20个零点时,的最小值.【详解】(1)由最低点为,得,由,得,由点在图像上得,即,,即,又,,.(2)由(1)得,周期,在长为的闭区间内有2个或3个零点,由,得,或,所以或..又,则当时恰有20个零点,此时b的最小值为.【点睛】本题考查求三角函数解析式,考查函数的零点个数问题.掌握三角函数的性质如周期性质,最值是解本题的基础.本题零点问题可直接求出零点,然后由零点分析得出结论.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)根据条件列方程解得公差,再根据等差数列通项公式得结果,(Ⅱ)先根据和项求通项,再根据错位相减法求和.【详解】(Ⅰ)因为构成等比数列,所以(0舍去)所以(Ⅱ)当时,当时,,相减得所以即【点睛】本题考查等差数列通项公式以及错位相减法求和,考查基本分析求解能力,属中档题.21、(1)见解析;(2).【解析】

(1)取的中点,取的中点,连接、、、、,可知、均为等边三角形,可证明出平面,从而得出,再证明出四边形为平行四边形,可得出,由等腰三角形三线合一的性质可得,从而可得出,再利用线面垂直的判定定理可证明出平面;(2)过点在平面内作,垂足为点,连接,证明出平面,可得知二面角的平面角为,计算出直角三角形三边边长,即可求出,即为所求.【详解】(1)如下图所示,取的中点,取的中点,连接、、、、,在等腰梯形中,,,,为的中点,所以,,又,则,为等边三角形,同理可知为等边三角形,为的中点,,,,平面,平面,,由于和是边长相等的等边三角形,且为的中点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论