四川省武胜烈面中学2024届数学高一下期末达标检测模拟试题含解析_第1页
四川省武胜烈面中学2024届数学高一下期末达标检测模拟试题含解析_第2页
四川省武胜烈面中学2024届数学高一下期末达标检测模拟试题含解析_第3页
四川省武胜烈面中学2024届数学高一下期末达标检测模拟试题含解析_第4页
四川省武胜烈面中学2024届数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省武胜烈面中学2024届数学高一下期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点且与原点距离最大的直线方程是()A. B.C. D.2.已知,集合,则A. B. C. D.3.在△ABC中,AB=,AC=1,,△ABC的面积为,则()A.30° B.45° C.60° D.75°4.关于x的不等式ax-b>0的解集是,则关于x的不等式SKIPIF1<0≤0的解集是()A.(-∞,-1]∪[2,+∞)B.[-1,2]C.[1,2]D.(,1]∪[2,)5.已知向量,,且与的夹角为,则()A. B.2 C. D.146.下列函数中最小正周期为的是()A. B. C. D.7.为了得到函数的图象,可以将函数的图象()A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度8.某几何体的三视图如图所示,则该几何体的表面积是()A.2 B. C. D.129.一个几何体的三视图如图,则该几何体的体积为()A. B. C.10 D.10.已知函数,且的图象向左平移个单位后所得的图象关于坐标原点对称,则的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的部分图象如图所示,则的单调增区间是______.12.设等比数列的首项为,公比为,所有项和为1,则首项的取值范围是____________.13.三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________14.设等差数列的前项和为,若,,则______.15.空间两点,间的距离为_____.16.已知数列的前项和为,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范围18.某销售公司通过市场调查,得到某种商品的广告费(万元)与销售收入(万元)之间的数据如下:广告费(万元)1245销售收入(万元)10224048(1)求销售收入关于广告费的线性回归方程;(2)若该商品的成本(除广告费之外的其他费用)为万元,利用(1)中的回归方程求该商品利润的最大值(利润=销售收入-成本-广告费).参考公式:,.19.如图,在平面四边形中,为的角平分线,,,.(1)求;(2)若的面积,求的长.20.设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.(1)判断下列数列是否为“弱等差数列”,并说明理由.①1,3,5,7,9,11;②2,,,,.(2)证明:若,则数列为“弱等差数列”.(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由21.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

当直线与垂直时距离最大,进而可得直线的斜率,从而得到直线方程。【详解】原点坐标为,根据题意可知当直线与垂直时距离最大,由两点斜率公式可得:所以所求直线的斜率为:故所求直线的方程为:,化简可得:故答案选A【点睛】本题考查点到直线的距离公式,涉及直线的点斜式方程和一般方程,属于基础题。2、D【解析】

先求出集合A,由此能求出∁UA.【详解】∵U=R,集合A={x|1﹣2x>0}={x|x},∴∁UA={x|x}.故选:D.【点睛】本题考查补集的求法,考查补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.3、C【解析】

试题分析:由三角形面积公式得,,所以.显然三角形为直角三角形,且,所以.考点:解三角形.4、A【解析】试题分析:因为关于x的不等式ax-b>0的解集是,所以,从而SKIPIF1<0≤0可化为SKIPIF1<0,解得,关于x的不等式SKIPIF1<0≤0的解集是(-∞,-1]∪[2,+∞),选A。考点:本题主要考查一元一次不等式、一元二次不等式的解法。点评:简单题,从已知出发,首先确定a,b的关系,并进一步确定一元二次不等式的解集。5、A【解析】

首先求出、,再根据计算可得;【详解】解:,,又,且与的夹角为,所以.故选:A【点睛】本题考查平面向量的数量积以及运算律,属于基础题.6、C【解析】

对A选项,对赋值,即可判断其最小正周期不是;利用三角函数的周期公式即可判断B、D的最小正周期不是,问题得解.【详解】对A选项,令,则,不满足,所以不是以为周期的函数,其最小正周期不为;对B选项,的最小正周期为:;对D选项,的最小正周期为:;排除A、B、D故选C【点睛】本题主要考查了三角函数的周期公式及周期函数的定义,还考查了赋值法,属于基础题.7、B【解析】

由三角函数的诱导公式可得,再结合三角函数图像的平移变换即可得解.【详解】解:由,即为了得到函数的图象,可以将函数的图象向右平移个单位长度,故选:B.【点睛】本题考查了三角函数图像的平移变换及三角函数的诱导公式,属基础题.8、C【解析】

由该几何体的三视图可知该几何体为底面是等腰直角三角形的直棱柱,再结合棱柱的表面积公式求解即可.【详解】解:由该几何体的三视图可知,该几何体为底面是等腰直角三角形的直棱柱,又由图可知底面等腰直角三角形的直角边长为1,棱柱的高为1,则该几何体的表面积是,故选:C.【点睛】本题考查了几何体的三视图,重点考查了棱柱的表面积公式,属基础题.9、B【解析】

由三视图可知该几何体为正四棱台,下底面边长为4,上底面边长为2,高为1.再由正四棱台体积公式求解.【详解】由三视图可知该几何体为正四棱台,下底面边长为4,上底面边长为2,高为1,所以,,∴该正四棱台的体积.故选:B.【点睛】本题考查由三视图求正四棱台的体积,关键是由三视图判断出原几何体的形状,属于基础题.10、C【解析】

由函数图像的平移变换得的图象向左平移个单位,得到,再结合三角函数的性质运算即可得解.【详解】解:,将的图象向左平移个单位,得到,因为平移后图象关于对称,所以,可得,,,,因为,所以的最小值为,故选C.【点睛】本题考查了函数图像的平移变换及三角函数的性质,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(区间端点开闭均可)【解析】

由已知函数图象求得,进一步得到,再由五点作图的第二点求得,则得到函数的解析式,然后利用复合函数的单调性求出的单调增区间.【详解】由图可知,,则,.又,.则.由,,解得,.的单调增区间是.【点睛】本题主要考查由函数的部分图象求函数解析式以及复合函数单调区间的求法.12、【解析】

由题意可得得且,可得首项的取值范围.【详解】解:由题意得:,,故答案为:.【点睛】本题主要考查等比数列前n项的和、数列极限的运算,属于中档题.13、【解析】

由已知设点到平面距离为,则点到平面距离为,所以,考点:几何体的体积.14、10【解析】

将和用首项和公差表示,解方程组,求出首项和公式,利用公式求解.【详解】设该数列的公差为,由题可知:,解得,故.故答案为:10.【点睛】本题考查由基本量计算等差数列的通项公式以及前项和,属基础题.15、【解析】

根据空间中两点间的距离公式即可得到答案【详解】由空间中两点间的距离公式可得;;故距离为3【点睛】本题考查空间中两点间的距离公式,属于基础题。16、【解析】

利用和的关系计算得到答案.【详解】当时,满足通项公式故答案为【点睛】本题考查了和的关系,忽略的情况是容易发生的错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)[0,].【解析】

(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin(2x+)+,∵≤x≤,≤2x+≤,-≤sin(2x+)≤1,0≤f(x)≤,∴f(x)∈[0,].本试题组要是考查了三角函数的运用.18、(1);(2)19.44(万无)【解析】

(1)先求出,然后求出回归系数,得回归方程;(2)由回归方程得估计销售收入,减去成本得利润,由二次函数知识得最大值.【详解】(1)由题意,,所以,,所以回归方程为;(2)由(1),所以(万元)时,利润最大且最大值为19.44(万元).【点睛】本题考查求线性回归直线方程,考查回归方程的应用.考查了学生的运算求解能力.19、(1),(2)【解析】

(1)首先根据正弦定理得到,得到,在求即可.(2)首先根据得到,在根据余弦定理即可求出的长.【详解】(1)在中,,即.,或(舍去).所以.(2),.在中,由余弦定理知:【点睛】本题第一问考查正弦定理,第二问考查余弦定理,同时考查了学生的计算能力,属于中档题.20、(1)①是,②不是,理由见解析(2)证明见解析(3)存在,证明见解析【解析】

(1)①举出符合条件的具体例子即可;②反证法推出矛盾;

(2)根据题意找出符合条件的为等差数列即可;

(3)首先,根据,将公差表示出来,计算任意相邻两项的差值可以发现不大于.那么用裂项相消的方法表示出,结合相邻两项差值不大于可以得到,接下来,只需证明存在满足条件的即可.用和公差表示出,并展开可以发现多项式的最高次项为,而已知,因此在足够大时显然成立.结论得证.【详解】解:(1)数列①:1,3,5,7,9,11是“弱等差数列”

取分别为1,3,5,7,9,11,13即可;

数列②2,,,,不是“弱等差数列”

否则,若数列②为“弱等差数列”,则存在实数构成等差数列,设公差为,

,又与矛盾,所以数列②2,,,,不是“弱等差数列”;

(2)证明:设,

令,取,则,

则,

就有,命题成立.

故数列为“弱等差数列”;(3)若存在这样的正整数,使得

成立.

因为,,

则,其中待定.

从而,

又,∴当时,总成立.

如果取适当的,使得,又有

所以,有

为使得,需要,

上式左侧展开为关于的多项式,最高次项为,其次数为,

故,对于任意给定正整数,当充分大时,上述不等式总成立,即总存在满足条件的正整数,使得等比数列:是一个长度为的“弱等差数列”.【点睛】本题要求学生能够从已知分析出“弱等差数列”要想成立所应该具备的要求,进而进行推理,转化,最后进行验证,本题难度相当大.21、(1)an=3n–4,(3)Sn=n3–8n,最小值为–1.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论