版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青州二中2024年数学高一下期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方体ABCD﹣A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论中错误的是()A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥A﹣BEF的体积为定值D.四面体ACDF的体积为定值2.已知,实数、满足关系式,若对于任意给定的,当在上变化时,的最小值为,则()A. B. C. D.3.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,4.若正实数,满足,则有下列结论:①;②;③;④.其中正确结论的个数为()A.1 B.2 C.3 D.45.若直线y=﹣x+1的倾斜角为,则A. B.1 C. D.6.下图所示的几何体是由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为质点的圆锥面得到,现用一个垂直于底面的平面去截该几何体、则截面图形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)7.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.8.下列选项正确的是()A.若,则B.若,则C.若,则D.若,则9.已知数列{an}满足且,则的值是()A.-5 B.- C.5 D.10.记Sn为等差数列{an}的前A.an=2n-5 B.an=3n-10二、填空题:本大题共6小题,每小题5分,共30分。11.直线与直线的交点为,则________.12.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.13.在中,角,,所对的边分别为,,,若,则角最大值为______.14.若关于的方程()在区间有实根,则最小值是____.15.已知圆,直线l被圆所截得的弦的中点为.则直线l的方程是________(用一般式直线方程表示).16.已知,,,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的值;(2)求的值.18.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?19.已知函数.(1)当,时,求不等式的解集;(2)若,,的最小值为2,求的最小值.20.为了解人们对某种食材营养价值的认识程度,某档健康养生电视节目组织名营养专家和名现场观众各组成一个评分小组,给食材的营养价值打分(十分制).下面是两个小组的打分数据:第一小组第二小组(1)求第一小组数据的中位数与平均数,用这两个数字特征中的哪一种来描述第一小组打分的情况更合适?说明你的理由.(2)你能否判断第一小组与第二小组哪一个更像是由营养专家组成的吗?请比较数字特征并说明理由.(3)节目组收集了烹饪该食材的加热时间:(单位:)与其营养成分保留百分比的有关数据:食材的加热时间(单位:)营养成分保留百分比在答题卡上画出散点图,求关于的线性回归方程(系数精确到),并说明回归方程中斜率的含义.附注:参考数据:,.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,.21.已知数列满足,.(Ⅰ)求,的值,并证明:0<≤1;(Ⅱ)证明:;(Ⅲ)证明:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据面面平行的性质定理,判断A选项是否正确,根据锥体体积计算公式,判断BCD选项是否正确.【详解】对于A选项,易得平面与平面平行,所以平面成立,A选项结论正确.对于B选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以四面体体积为定值,故B选项结论错误.对于C选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以三棱锥体积为定值,故C选项结论正确.对于D选项,由于三角形面积为定值,到平面的距离为定值,所以四面体的体积为定值.综上所述,错误的结论为B选项.故选:B【点睛】本小题主要考查利用面面平行证明线面平行,考查三棱锥(四面体)体积的计算,考查空间想象能力和逻辑推理能力,属于基础题.2、A【解析】
先计算出,然后利用基本不等式可得出的值.【详解】,由基本不等式得,当且仅当时,由于,即当时,等号成立,因此,,故选:A.【点睛】本题考查极限的计算,考查利用基本不等式求最值,解题的关键就是利用数列的极限计算出带的表达式,并利用基本不等式进行计算,考查运算求解能力,属于中等题.3、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.4、C【解析】
根据不等式的基本性质,逐项推理判断,即可求解,得到答案.【详解】由题意,正实数是正数,且,①中,可得,所以是错误的;②中,由,可得是正确的;③中,根据实数的性质,可得是正确的;④中,因为,所以是正确的,故选C.【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.5、D【解析】
由题意利用直线的方程先求出它的斜率,可得它的倾斜角α,再利用特殊角的余弦值求得cosα.【详解】∵直线y=﹣x+1的斜率为﹣1,故它的倾斜角为α=135°,则cosα=cos135°=﹣cos45°,故选:D.【点睛】本题主要考查直线的斜率和倾斜角,特殊角的余弦值,属于基础题.6、D【解析】
根据圆锥曲线的定义和圆锥的几何特征,分截面过旋转轴时和截面不过旋转轴时两种情况,分析截面图形的形状,最后综合讨论结果,可得答案.【详解】根据题意,当截面过旋转轴时,圆锥的轴截面为等腰三角形,此时(1)符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时(4)符合条件;故截面图形可能是(1)(4);故选:D.【点睛】本题考查的知识点是旋转体,圆锥曲线的定义,关键是掌握圆柱与圆锥的几何特征.7、D【解析】
本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.8、B【解析】
通过逐一判断ABCD选项,得到答案.【详解】对于A选项,若,代入,,故A错误;对于C选项,等价于,故C错误;对于D选项,若,则,故D错误,所以答案选B.【点睛】本题主要考查不等式的相关性质,难度不大.9、A【解析】试题分析:即数列是公比为3的等比数列.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.10、A【解析】
等差数列通项公式与前n项和公式.本题还可用排除,对B,a5=5,S4=4(-7+2)【详解】由题知,S4=4a1+【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
(2,2)为直线和直线的交点,即点(2,2)在两条直线上,分别代入直线方程,即可求出a,b的值,进而得a+b的值。【详解】因为直线与直线的交点为,所以,,即,,故.【点睛】本题考查求直线方程中的参数,属于基础题。12、【解析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力13、【解析】
根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题14、【解析】
将看作是关于的直线方程,则表示点到点的距离的平方,根据距离公式可求出点到直线的距离最小,再结合对勾函数的单调性,可求出最小值。【详解】将看作是关于的直线方程,表示点与点之间距离的平方,点到直线的距离为,又因为,令,在上单调递增,所以,所以的最小值为.【点睛】本题主要考查点到直线的距离公式以及对勾函数单调性的应用,意在考查学生转化思想的的应用。15、【解析】
将圆的方程化为标椎方程,找出圆心坐标与半径,根据垂径定理得到直线与直线垂直,根据直线的斜率求出直线的斜率,确定出直线的方程即可.【详解】由已知圆的方程可得,所以圆心,半径为3,由垂径定理知:直线直线,因为直线的斜率,所以直线的斜率,则直线的方程为,即.故答案为:.【点睛】本题考查直线与圆的位置关系,考查逻辑思维能力和运算能力,属于常考题.16、【解析】
将所求的式子变形为,展开后可利用基本不等式求得最小值.【详解】解:,,,,当且仅当时取等号.故答案为1.【点睛】本题考查了“乘1法”和基本不等式,属于基础题.由于已知条件和所求的式子都是和的形式,不能直接用基本不等式求得最值,使用“乘1法”之后,就可以利用基本不等式来求得最小值了.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)20,(2)【解析】
(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【详解】(1)由,得,所以=(2)∵,∴【点睛】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.18、(1)当汽车的平均速度时车流量达到最大值。(2)【解析】
(1)首先根据题意求出,再利用基本不等式即可求出答案.(2)根据题意列出不等式,解不等式即可.【详解】(1)有题知:,解得.所以,因为,当且仅当时,取“”.所以当汽车的平均速度时车流量达到最大值.(2)有题知:,整理得:,解得:.所以当时,在该时间段内车流量至少为千辆/小时.【点睛】本题第一问考查利用基本不等式求最值,第二问考查了二次不等式的解法,属于中档题.19、(1);(2)【解析】
(1)利用零点讨论法解绝对值不等式;(2)利用绝对值三角不等式得到a+b=2,再利用基本不等式求的最小值.【详解】(1)当,时,,得或或,解得:,∴不等式的解集为.(2),∴,∴,当且仅当,时取等号.∴的最小值为.【点睛】本题主要考查零点讨论法解绝对值不等式,考查绝对值三角不等式和基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)中位数为,平均数为,中位数更适合描述第一小组打分的情况;(2)由可知第二小组的打分人员更像是由营养专家组成;(3)散点图见解析;回归直线为:;的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少.【解析】
(1)将第一小组打分按从小到大排序,根据中位数和平均数的计算方法求得中位数和平均数;由于存在极端数据,可知中位数更适合描述第一小组打分情况;(2)分别计算两组数据的方差,由可知第二小组打分相对集中,其更像是由营养专家组成;(3)由已知数据画出散点图;利用最小二乘法计算可得回归直线;根据的含义,可确定斜率的含义.【详解】(1)第一小组的打分从小到大可排序为:,,,,,,,则中位数为:平均数为:可发现第一小组中出现极端数据,会造成平均数偏低则由以上算得的两个数字特征可知,选择中位数更适合描述第一小组打分的情况.(2)第一小组:平均数为方差:第二小组:平均数:方差:可知,,第一小组的方差远大于第二小组的方差第二小组的打分相对集中,故第二小组的打分人员更像是由营养专家组成的(3)由已知数据,得散点图如下,,且,则关于的线性回归方程为:回归方程中斜率的含义:该食材烹饪时间每加热多分钟,则其营养成分大约会减少.【点睛】本题考查计算数据的中位数、平均数和方差、根据方差确定数据的波动性、回归直线的求解问题;考查学生对于统计中的公式的掌握情况,对于学生的计算和求解能力有一定要求,属于常考题型.21、(Ⅰ)见证明;(Ⅱ)见证明;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东施工合同违约
- 溜冰场租赁合同适用于溜冰租赁
- 体育训练搭棚施工合同范本
- 大学校园真石漆修复协议
- 家政公司保姆劳动合同范本
- 婚礼场地遮阳棚工程协议
- 《诗歌的暗示性》课件
- 大班歌唱活动花儿开教案
- 【初中道法】认识生命+课件-2024-2025学年统编版道德与法治七年级上册
- 关于建筑专业的实习报告范文锦集五篇
- 篮球社团教案
- 2024 美国中概股上市公司发展现状白皮书
- 丧葬费家庭协议书范文范本
- 公司对公司走账协议书范文模板
- 留置导尿并发症的预防及处理
- 消防安全宣传教育-开展“消防安全大家谈”、“消防公益说”专题讲座
- 中小学119消防宣传月活动方案3篇
- 部编版五年级语文上册快乐读书吧测试题及答案
- 中汇富能排矸场设计
- 江苏省2024-2025学年八年级上学期期中专题复习最值问题专题训练
- 人教版2024新版八年级全一册信息技术第1课 开启物联网之门 教学设计
评论
0/150
提交评论