版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省滨州市高一下数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.2.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.3.已知数列{an}满足且,则的值是()A.-5 B.- C.5 D.4.若数列对任意满足,下面给出关于数列的四个命题:①可以是等差数列,②可以是等比数列;③可以既是等差又是等比数列;④可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个 B.2个 C.3个 D.4个5.已知函数若关于的方程恰有两个互异的实数解,则的取值范围为A. B. C. D.6.在中,,且,若,则()A.2 B.1 C. D.7.的内角、、所对的边分别为、、,下列命题:(1)三边、、既成等差数列,又成等比数列,则是等边三角形;(2)若,则是等腰三角形;(3)若,则;(4)若,则;(5),,若唯一确定,则.其中,正确命题是()A.(1)(3)(4) B.(1)(2)(3) C.(1)(2)(5) D.(3)(4)(5)8.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.9.已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B.C. D.10.已知在中,内角的对边分别为,若,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集是______.12.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.13.已知,,,则的最小值为__________.14.已知等比数列、、、满足,,,则的取值范围为__________.15.圆与圆的公共弦长为______________。16.三棱锥的各顶点都在球的球面上,,平面,,,球的表面积为,则的表面积为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在国内汽车市场中,国产SUV出现了持续不退的销售热潮,2018年国产SUV销量排行榜完整版已经出炉,某品牌车型以惊人的销量成绩击退了所有虎视眈眈的对手,再次霸气登顶,下面是该品牌国产SUV分别在2017年与2018年7~11月份的销售量对比表时间7月8月9月10月11月2017年(单位:万辆)2.83.93.54.45.42018年(单位:万辆)3.83.94.54.95.4(Ⅰ)若从7月至11月中任选两个月份,求至少有一个月份这两年该国产品牌SUV销量相同的概率.(Ⅱ)分别求这两年7月至11月的销售数据的平均数,并直接判断哪年的销售量比较稳定.18.设数列满足,,,.s(1)证明:数列是等差数列,并求数列的通项;(2)求数列的通项,并求数列的前项和;(3)若,且是单调递增数列,求实数的取值范围.19.已知圆(1)求圆关于直线对称的圆的标准方程;(2)过点的直线被圆截得的弦长为8,求直线的方程;(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.20.已知.(1)化简;(2)若是第二象限角,且,求的值.21.已知函数,若,且,,求满足条件的,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据平均数的性质和方差的性质即可得到结果.【详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【点睛】本题考查平均数和方差的性质,属基础题.2、A【解析】
用累乘法可得.利用错位相减法可得S,即可求解S10=22.【详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.3、A【解析】试题分析:即数列是公比为3的等比数列.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.4、C【解析】
由已知可得an﹣an﹣1=2,或an=2an﹣1,结合等差数列和等比数列的定义,可得答案.【详解】∵数列{an}对任意n≥2(n∈N)满足(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,∴an﹣an﹣1=2,或an=2an﹣1,∴①{an}可以是公差为2的等差数列,正确;②{an}可以是公比为2的等比数列,正确;③若{an}既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误;④由(an﹣an﹣1﹣2)(an﹣2an﹣1)=0,an﹣an﹣1=2或an=2an﹣1,当数列为:1,3,6,8,16……得{an}既不是等差也不是等比数列,故④正确;故选C.【点睛】本题以命题的真假判断与应用为载体,考查了等差,等比数列的相关内容,属于中档题.5、D【解析】
画出图象及直线,借助图象分析.【详解】如图,当直线位于点及其上方且位于点及其下方,或者直线与曲线相切在第一象限时符合要求.即,即,或者,得,,即,得,所以的取值范围是.故选D.【点睛】根据方程实根个数确定参数范围,常把其转化为曲线交点个数,特别是其中一条为直线时常用此法.6、A【解析】
取的中点,连接,根据,即可得解.【详解】取的中点,连接,在中,,且,所以,.故选:A【点睛】此题考查求向量的数量积,涉及平面向量的线性运算,根据数量积的几何意义求解,可以简化计算.7、A【解析】
由等差数列和等比数列中项性质可判断(1);由正弦定理和二倍角公式、诱导公式,可判断(2);由三角形的边角关系和余弦函数的单调性可判断(3);由余弦定理和基本不等式可判断(4);由正弦定理和三角形的边角关系可判断(5).【详解】解:若、、既成等差数列,又成等比数列,则,,则,得,得,得,则是等边三角形,故(1)正确;若,则,则,则或,即或,则△ABC是等腰或直角三角形,故(2)错误;若,则,则,故(3)正确;若,则,则,由得,则,则,故(4)正确;若,,则,即,又,若唯一确定,则或,则或,故(5)错误;故选:A.【点睛】本题主要考查正弦定理和余弦定理的运用,以及三角形的形状的判断,考查化简运算能力,属于中档题.8、C【解析】由题意,PA⊥面ABC,则为直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因为为直角三角形,经分析只能,故,三棱锥的外接球的圆心为PC的中点,所以则球的表面积为.故选C.9、B【解析】
由平行线间的距离公式求出圆的直径,然后设出圆心,由点到两条切线的距离都等于半径,求出,即可求得圆的方程.【详解】因为两条直线与平行,所以它们之间的距离即为圆的直径,所以,所以.设圆心坐标为,则点到两条切线的距离都等于半径,所以,,解得,故圆心为,所以圆的标准方程为.故选:.【点睛】本题主要考查求解圆的方程,同时又进一步考查了直线与圆的位置关系,圆的切线性质等.本题也注重考查审题能力,分析问题和解决问题的能力.难度较易.10、A【解析】
由题意变形,运用余弦定理,可得cosB,再由同角的平方关系,可得所求值.【详解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,则cosB,可得B<π,即有sinB.故选A.【点睛】本题考查余弦定理的运用,考查同角的平方关系,以及运算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
根据三角函数的性质求解即可【详解】,如图所示:则故答案为:或【点睛】本题考查由三角函数值求解对应自变量取值范围,结合图形求解能够避免错解,属于基础题12、5【解析】设一部门抽取的员工人数为x,则.13、8【解析】由题意可得:则的最小值为.当且仅当时等号成立.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14、【解析】
设等比数列、、、的公比为,由和计算出的取值范围,再由可得出的取值范围.【详解】设等比数列、、、的公比为,,,,所以,,,.所以,,故答案为:.【点睛】本题考查等比数列通项公式及其性质,解题的关键就是利用已知条件求出公比的取值范围,考查运算求解能力,属于中等题.15、【解析】
利用两圆一般方程求两圆公共弦方程,求其中一圆到公共弦的距离,利用直线被圆截得的弦长公式可得所求.【详解】由两圆方程相减得两圆公共弦方程为,即,圆化为,圆心到直线的距离为1,所以两圆公共弦长为,故答案为.【点睛】本题考查两圆位置关系,直线与圆的位置关系,考查运算能力,属于基本题.16、【解析】
根据题意可证得,而,所以球心为的中点.由球的表面积为,即可求出,继而得出的值,求出三棱锥的表面积.【详解】如图所示:∵,平面,∴,又,故球心为的中点.∵球的表面积为,∴,即有.∴,.∴,,,.故的表面积为.故答案为:.【点睛】本题主要考查三棱锥的表面积的求法,球的表面积公式的应用,意在考查学生的直观想象能力和数学运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ),,年销售量更稳定.【解析】
(Ⅰ)列举出所有可能的情况,在其中找到至少一个月份两年销量相同的情况,根据古典概型概率公式求得结果;(Ⅱ)根据平均数和方差的计算公式分别计算出两年销量的平均数与方差;由可得结论.【详解】(Ⅰ)从月至月中任选两个月份,记为,所有可能的结果为:,,,,,,,,,,共种情况记事件为“至少有一个月份这两年国产品牌销量相同”,则有:,,,,,,,共种情况,即至少有一个月份这两年国产品牌销量相同的概率为(Ⅱ)年销售数据平均数为:方差年销售数据平均数为:方差年的销售量更稳定【点睛】本题考查古典概型概率问题的求解、计算数据的平均数、利用方差评估数据的稳定性的问题;处理古典概型问题的关键是通过列举的方式得到所有基本事件个数和满足题意的基本事件个数,从而利用公式求得结果.18、(1)证明见解析,;(2),;(3).【解析】
(1)利用等差数列的定义可证明出数列是等差数列,并确定该数列的首项和公差,即可得出数列的通项;(2)利用累加法求出数列的通项,然后利用裂项法求出数列的前项和;(3)求出,然后分为正奇数和正偶数两种情况分类讨论,结合可得出实数的取值范围.【详解】(1),等式两边同时减去得,,且,所以,数列是以为首项,以为公差的等差数列,因此,;(2),,,;(3).当为正奇数时,,,由,得,可得,由于数列为单调递减数列,;当为正偶数时,,,由,得,可得,由于数列为单调递增数列,.因此,实数的取值范围是.【点睛】本题考查利用等差数列的定义证明等差数列,同时也考查了累加法求通项、裂项求和法以及利用数列的单调性求参数,充分利用单调性的定义来求解,考查运算求解能力,属于中等题.19、(1);(2)或;(3)【解析】
(1)设,根据圆心与关于直线对称,列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得,根据斜率分类讨论,求得直线的斜率,即可求解;(3)由直线,得直线过定点,根据时,弦长最短,即可求解.【详解】(1)由题意,圆的圆心,半径为,设,因为圆心与关于直线对称,所以,解得,则,半径,所以圆标准方程为:(2)设点到直线距离为,圆的弦长公式,得,解得,①当斜率不存在时,直线方程为,满足题意②当斜率存在时,设直线方程为,则,解得,所以直线的方程为,综上,直线方程为或(3)由直线,可化为,可得直线过定点,当时,弦长最短,又由,可得,此时最短弦长为.【点睛】本题主要考查了圆的对称圆的求解,以及直线与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外文模板印刷用产业链招商引资的调研报告
- 商业管理计划行业市场调研分析报告
- 皮制公文包细分市场深度研究报告
- 工具采购合同
- 在啤酒作坊内供应饮料行业相关项目经营管理报告
- 医用沉淀泥产品供应链分析
- 厚夹克产业链招商引资的调研报告
- 5G广播服务行业经营分析报告
- 举办竞走比赛行业经营分析报告
- 化妆品研究行业相关项目经营管理报告
- 04D702-1 常用低压配电设备安装
- 反循环钻孔灌注桩施工方案
- 2023年安徽省投资集团控股有限公司招聘笔试题库及答案解析
- YY/T 1829-2022牙科学牙本质小管封堵效果体外评价方法
- 建筑施工进度计划表
- GA/T 798-2008排油烟气防火止回阀
- 《理解记忆记得牢》教案
- EPC核心网系统架构系统介绍课件
- 无创呼吸机操作流程-课件
- 护士注册健康体检表下载【可直接打印版本】
- 层次分析法课件
评论
0/150
提交评论