灰色预测法GM(1-1)总结_第1页
灰色预测法GM(1-1)总结_第2页
灰色预测法GM(1-1)总结_第3页
灰色预测法GM(1-1)总结_第4页
灰色预测法GM(1-1)总结_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

灰色预测法GM(1-1)总结灰色预测模型一、灰色预测的概念灰色预测法是一种对含有不确定因素的系统进行预测的方法。灰色系统是介于白色系统和黑色系统之间的一种系统。灰色系统内的一部分信息是已知的,另一部分信息时未知的,系统内各因素间具有不确定的关系。灰色预测,是指对系统行为特征值的发展变化进行的预测,对既含有已知信息又含有不确定信息的系统进行的预测,也就是对在一定范围内变化的、与时间序列有关的灰过程进行预测。尽管灰过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此可以通过对原始数据进行生成处理来寻找系统变动的规律,生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。灰色预测是利用这种规律建立灰色模型对灰色系统进行预测。二、灰色预测的类型灰色时间序列预测;即用观察到的反映预测对象特征的时间序列来构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征量的时间。畸变预测;即通过灰色模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。系统预测;通过对系统行为特征指标建立一组相互关联的灰色预测模型,预测系统中众多变量间的相互协调关系的变化。拓扑预测;将原始数据作曲线,在曲线上按定值寻找该定值发生的所有时点,并以该定值为框架构成时点数列,然后建立模型预测该定值所发生的时点三、GM(1,1)模型的建立数据处理为了弱化原始时间序列的随机性,在建立灰色预测模型之前,需先对原始时间序列进行数据处理,经过数据处理后的时间序列即称为生成列。设是所要预测的某项指标的原始数据,计算数列的级比。如果绝大部分的级比都落在可容覆盖区间内,则可以建立GM(1,1)模型且可以进行灰色预测。否则,对数据做适当的预处理。方法目前主要有数据开n方、数据取对数、数据平滑。预处理的数据平滑设计为三点平滑,具体可以按照下式处理预处理后对数据作一次累加生成处理,即:将原始序列的第一个数据作为生成列的第一个数据,将原始序列的第二个数据加到原始序列的第一个数据上,其和作为生成列的第二个数据。按此规则进行下去,便可得到生成列。根据,得到一个新的数列这个新的数列与原始数列相比,其随机性程度大大弱化,平稳性大大增加。新数列的变化趋势近似地用下面的微分方程描述。其中:a称为发展灰数;u称为内生控制灰数。模型求解。令,为待估参数向量,,,于是模型可表示为通过最小二乘法得到:求解微分方程,即可得灰色预测的离散时间响应函数:(2)灰色GM(1,1)模型的缺点该模型是指运用曲线拟合和灰色系统理论对我国人口发展进行预测的方法,因此它对历史数据有很强的依赖性,而且GM

(1,1)的模型没有考虑各个因素之间的联系.因此,误差偏大,尤其是对中长期预测,例如对中国人口总数变化情况做长期预测时,误差偏大,脱离实际.下面我们来讨论GM(1,1)模型的适用范围.GM(1,1)模型的白化微分方程:其中为发展系数,可以证明,当GM(1,1)的发展系数时,GM(1,1)模型无意义。因此,是GM(1,1)发展系数a的禁区。在此区间,GM(1,1)模型失去意义。一般地,当时,GM(1,1)模型有意义。但是,随着a的不同取值,预测效果也不同。通过数值分析,有如下结论:(1)当时,GM(1,1)的1步预测精度在98%以上,2步和5步预测精度都在97%以上,可用于中长期预测;(2)当时,GM(1,1)的1步和2步预测精度都在90%以上,10步预测精度也高于80%,可用于短期预测,中长期预测慎用;(3)当时,GM(1,1)用作短期预测应十分慎重;(4)当时,GM(1,1)的1步预测精度已低于70%,应采用残差修正模型;(5)当时,不宜采用GM(1,1)模型。如果要考虑到多因素的联系和影响,此时我们不妨建立GM(1,n)模型.GM(1,N)模型能模拟系统发展的动态过程,不但吸收了传统的灰色模型的建立,而且建立了多中改进的灰色模型,提高了预测精度.论文小结处:与传统的数理统计模型相比,该模型在…预测方面具有明显优点:①无需典型的概率分布;②减少时间序列的随机性;③小样本即可计算;④计算简便。用灰色理论预测…理论可靠,方法较简单。对原始数据系列长度要求不高,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论