![福建省厦门市五中学中考三模数学试题及答案解析_第1页](http://file4.renrendoc.com/view12/M0A/0E/3B/wKhkGWZo5HWAO68kAAF4MM_nEa8603.jpg)
![福建省厦门市五中学中考三模数学试题及答案解析_第2页](http://file4.renrendoc.com/view12/M0A/0E/3B/wKhkGWZo5HWAO68kAAF4MM_nEa86032.jpg)
![福建省厦门市五中学中考三模数学试题及答案解析_第3页](http://file4.renrendoc.com/view12/M0A/0E/3B/wKhkGWZo5HWAO68kAAF4MM_nEa86033.jpg)
![福建省厦门市五中学中考三模数学试题及答案解析_第4页](http://file4.renrendoc.com/view12/M0A/0E/3B/wKhkGWZo5HWAO68kAAF4MM_nEa86034.jpg)
![福建省厦门市五中学中考三模数学试题及答案解析_第5页](http://file4.renrendoc.com/view12/M0A/0E/3B/wKhkGWZo5HWAO68kAAF4MM_nEa86035.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市五中学中考三模数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,2) B.(4,1) C.(4,) D.(4,)2.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是()A. B.C. D.3.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为()A.2 B.4 C.2 D.44.下列博物院的标识中不是轴对称图形的是()A. B.C. D.5.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<06.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH7.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.188.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度()A.1 B.5 C.1或5 D.2或49.如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A.6 B. C. D.310.据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为A.元 B.元 C.元 D.元二、填空题(本大题共6个小题,每小题3分,共18分)11.若反比例函数y=的图象位于第一、三象限,则正整数k的值是_____.12.在实数﹣2、0、﹣1、2、中,最小的是_______.13.函数y=中自变量x的取值范围是___________.14.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.15.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73)16.关于x的一元二次方程有两个不相等的实数根,则k的取值范围是▲.三、解答题(共8题,共72分)17.(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.求反比例函数和一次函数的表达式;求当时自变量的取值范围.18.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.19.(8分)在平面直角坐标系xOy中,抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为1.(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是x轴上的一点,且∠ABP=∠CAO,直接写出点P的坐标.20.(8分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.21.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.22.(10分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(≈1.73).23.(12分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.24.全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】
由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′==2,于是得到结论.【详解】解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.2、C【解析】
根据定义运算“※”为:a※b=,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.【详解】解:y=2※x=,当x>0时,图象是y=对称轴右侧的部分;当x<0时,图象是y=对称轴左侧的部分,所以C选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“※”为:a※b=得出分段函数是解题关键.3、C【解析】
根据等腰三角形的性质和勾股定理解答即可.【详解】解:∵点A,D分别对应数轴上的实数﹣2,2,∴AD=4,∵等腰△ABC的底边BC与底边上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故选:C.【点睛】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.4、A【解析】
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误5、D【解析】当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.6、D【解析】
根据平行线的性质以及角平分线的定义,即可得到正确的结论.【详解】解:,故A选项正确;又故B选项正确;平分,,故C选项正确;,故选项错误;故选.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.7、A【解析】
由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长.【详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.8、C【解析】
由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.【详解】∵点C是劣弧AB的中点,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC为直角三角形,只能是∠OPC=90°,则△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根据对称性得,当P在OC的左侧时,PB=3+2=5,∴PB的长度为1或5.故选C.【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.9、D【解析】
解:因为AB是⊙O的直径,所以∠ACB=90°,又⊙O的直径AB垂直于弦CD,,所以在Rt△AEC中,∠A=30°,又AC=3,所以CE=AB=,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.10、C【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】亿=115956000000,所以亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共6个小题,每小题3分,共18分)11、1.【解析】
由反比例函数的性质列出不等式,解出k的范围,在这个范围写出k的整数解则可.【详解】解:∵反比例函数的图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k的值是:1.故答案为:1.【点睛】本题考查了反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.12、﹣1.【解析】
解:在实数﹣1、0、﹣1、1、中,最小的是﹣1,故答案为﹣1.【点睛】本题考查实数大小比较.13、x≥﹣且x≠1【解析】
试题解析:根据题意得:解得:x≥﹣且x≠1.故答案为:x≥﹣且x≠1.14、2【解析】
解:这组数据的平均数为2,
有(2+2+0-2+x+2)=2,
可求得x=2.
将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,
其平均数即中位数是(2+2)÷2=2.
故答案是:2.15、2.9【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.16、k<且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.三、解答题(共8题,共72分)17、(1),;(2)或.【解析】
(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.【详解】(1)把代入得.∴反比例函数的表达式为把和代入得,解得∴一次函数的表达式为.(2)由得∴当或时,.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.18、证明见解析.【解析】
根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.19、(4)y=﹣x4﹣4x+3;(4);(3)点P的坐标是(4,0)【解析】
(4)先求得抛物线的对称轴方程,然后再求得点C的坐标,设抛物线的解析式为y=a(x+4)4+4,将点(-3,0)代入求得a的值即可;(4)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB,AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;(3)连接BC,可证得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入个数据可得OP的值,可得P点坐标.【详解】解:(4)由题意得,抛物线y=ax4+4ax+c的对称轴是直线,∵a<0,抛物线开口向下,又与x轴有交点,∴抛物线的顶点C在x轴的上方,由于抛物线顶点C到x轴的距离为4,因此顶点C的坐标是(﹣4,4).可设此抛物线的表达式是y=a(x+4)4+4,由于此抛物线与x轴的交点A的坐标是(﹣3,0),可得a=﹣4.因此,抛物线的表达式是y=﹣x4﹣4x+3.(4)如图4,点B的坐标是(0,3).连接BC.∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,得AB4+BC4=AC4.∴△ABC为直角三角形,∠ABC=90°,所以tan∠CAB=.即∠CAB的正切值等于.(3)如图4,连接BC,∵OA=OB=3,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAP=∠ABO=45°,∵∠CAO=∠ABP,∴∠CAB=∠OBP,∵∠ABC=∠BOP=90°,∴△ACB∽△BPO,∴,∴,OP=4,∴点P的坐标是(4,0).【点睛】本题主要考查二次函数的图像与性质,综合性大.20、(1)见解析;(2)见解析.【解析】
(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.21、证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《指南艺术领域》课件
- 《ERP培训讲稿》课件
- 《理发师简谱》课件
- 《部分企业分配》课件
- 《细节图如何拍摄》课件
- 护理安全隐患及防范措施.11.25-【课件】
- 探索农学新领域
- 绿色插画风运动健身营销宣传主题
- 咨询业务季度报告模板
- 员工入股申请书
- 船舶轮机英语_专业用语
- 羊水栓塞的处理)
- 初中英语考试答题卡(可编辑WORD版)
- 风光高压变频器用户手册最新2011-11-17
- 基层法律服务所设立登记表
- 第四代建筑悬挑阳台脚手架施工
- 三相四线及三相三线错误接线向量图研究分析及更正
- 线务员之歌(电信线务员朗诵词)
- (完整版)fluent炉膛仿真教程文档
- 生活饮用水水质常规指标及限值表
- 浅谈六解放思想指导下的以水墨为主的幼儿园美育实践活动
评论
0/150
提交评论