版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省济源市2024年高一数学第二学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则下列不等式成立的是A. B. C. D.2.在直角梯形中,,为的中点,若,则A.1 B. C. D.3.函数图象的一条对称轴在内,则满足此条件的一个值为()A. B. C. D.4.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形5.在中,若,则角的大小为()A. B. C. D.6.圆和圆的公切线条数为()A.1 B.2 C.3 D.47.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则8.已知函数图象的一条对称轴是,则的值为()A.5 B. C.3 D.9.如果数据的平均数为,方差为,则的平均数和方差分别为()A. B. C. D.10.函数的最大值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在ΔABC中,角A,B,C所对的对边分别为a,b,c,若A=30∘,a=7,b=212.已知,,则______.13.设不等式组所表示的平面区域为D.若直线与D有公共点,则实数a的取值范围是_____________.14.方程在区间上的解为___________.15.函数的值域是__________.16.已知点是所在平面内的一点,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若关于的不等式的解集为,求的值;(2)若对任意恒成立,求的取值范围.18.设全集为,集合,集合.(Ⅰ)求;(Ⅱ)若,求实数的取值范围.19.已知数列中,,.(1)求证:是等差数列,并求的通项公式;(2)数列满足,求数列的前项和.20.已知,且(1)当时,解不等式;(2)在恒成立,求实数的取值范围.21.如图,在正三棱柱中,边的中点为,.⑴求三棱锥的体积;⑵点在线段上,且平面,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用的单调性直接判断即可。【详解】因为在上递增,又,所以成立。故选:C【点睛】本题主要考查了幂函数的单调性,属于基础题。2、B【解析】
连接,因为为中点,得到,可求出,从而可得出结果.【详解】连接,因为为中点,,.故选B【点睛】本题主要考查平面向量基本定理的应用,熟记平面向量基本定理即可,属于常考题型.3、A【解析】
求出函数的对称轴方程,使得满足在内,解不等式即可求出满足此条件的一个φ值.【详解】解:函数图象的对称轴方程为:xk∈Z,函数图象的一条对称轴在内,所以当k=0时,φ故选A.【点睛】本题是基础题,考查三角函数的基本性质,不等式的解法,考查计算能力,能够充分利用基本函数的性质解题是学好数学的前提.4、D【解析】
先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【点睛】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.5、D【解析】
由平面向量数量积的定义得出、与的等量关系,再由并代入、与的等量关系式求出的值,从而得出的大小.【详解】,,,由正弦定理边角互化思想得,,,同理得,,,则,解得,中至少有两个锐角,且,,所以,,,因此,,故选D.【点睛】本题考查平面向量的数量积的计算,考查利用正弦定理、两角和的正切公式求角的值,解题的关键就是利用三角恒等变换思想将问题转化为正切来进行计算,属于中等题.6、B【解析】
判断两圆的位置关系,根据两圆的位置关系判断两圆公切线的条数.【详解】圆的标准方程为,圆心坐标为,半径长为.圆的标准方程为,圆心坐标为,半径长为.圆心距为,由于,即,所以,两圆相交,公切线的条数为,故选B.【点睛】本题考查两圆公切线的条数,本质上就是判断两圆的位置关系,公切线条数与两圆位置的关系如下:①两圆相离条公切线;②两圆外切条公切线;③两圆相交条公切线;④两圆内切条公切线;⑤两圆内含没有公切线.7、D【解析】
根据各选项的条件及结论,可画出图形或想象图形,再结合平行、垂直的判定定理即可找出正确选项.【详解】选项A错误,同时和一个平面平行的两直线不一定平行,可能相交,可能异面;选项B错误,两平面平行,两平面内的直线不一定平行,可能异面;选项C错误,一个平面内垂直于两平面交线的直线,不一定和另一平面垂直,可能斜交;选项D正确,由,便得,又,,即.故选:D.【点睛】本题考查空间直线位置关系的判定,这种位置关系的判断题,可以举反例或者用定理简单证明,属于基础题.8、D【解析】
化简函数f(x)=acosx+sinx为一个角的一个三角函数的形式,利用图象关于直线对称,就是时,函数取得最值,求出a即可.【详解】函数f(x)=acosx+sinxsin(x+θ),其中tanθ=a,,其图象关于直线对称,所以θ,θ,所以tanθ=a,故答案为D【点睛】本题考查正弦函数的对称性,考查计算能力,逻辑思维能力,是基础题.9、D【解析】
根据平均数和方差的公式,可推导出,,,的平均数和方差.【详解】因为,所以,所以的平均数为;因为,所以,故选:D.【点睛】本题考查平均数与方差的公式计算,考查对概念的理解与应用,考查基本运算求解能力.10、B【解析】
令,再计算二次函数定区间上的最大值。【详解】令则【点睛】本题考查利用换元法将计算三角函数的最值转化为计算二次函数定区间上的最值。属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、32或【解析】
由余弦定理求出c,再利用面积公式即可得到答案。【详解】由于在ΔABC中,A=30∘,a=7,b=23,根据余弦定理可得:a2=b所以当c=1时,ΔABC的面积S=12bcsinA=32故ΔABC的面积等于32或【点睛】本题考查余弦定理与面积公式在三角形中的应用,属于中档题。12、【解析】
直接利用二倍角公式,即可得到本题答案.【详解】因为,所以,得,由,所以.故答案为:【点睛】本题主要考查利用二倍角公式求值,属基础题.13、【解析】
画出不等式组所表示的平面区域,直线过定点,根据图像确定直线斜率的取值范围.【详解】画出不等式组所表示的平面区域如下图所示,直线过定点,由图可知,而,所以.故填:.【点睛】本小题主要考查不等式表示区域的画法,考查直线过定点问题,考查直线斜率的取值范围的求法,属于基础题.14、【解析】试题分析:化简得:,所以,解得或(舍去),又,所以.【考点】二倍角公式及三角函数求值【名师点睛】已知三角函数值求角,基本思路是通过化简,得到角的某种三角函数值,结合角的范围求解.本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.15、【解析】
根据反余弦函数的性质,可得函数在单调递减函数,代入即可求解.【详解】由题意,函数的性质,可得函数在单调递减函数,又由,所以函数在的值域为.故答案为:.【点睛】本题主要考查了反余弦函数的单调性的应用,其中解答中熟记反余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
设为的中点,为的中点,为的中点,由得到,再进一步分析即得解.【详解】如图,设为的中点,为的中点,为的中点,因为,所以可得,整理得.又,所以,所以,又,所以.故答案为【点睛】本题主要考查向量的运算法则和共线向量,意在考查学生对这些知识的理解掌握水平,解答本题的关键是作辅助线,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)不等式可化为,而解集为,可利用韦达定理或直接代入即可得到答案;(2)法一:讨论和时,分离参数利用均值不等式即可得到取值范围;法二:利用二次函数在上大于等于0恒成立,即可得到取值范围.【详解】(1)法一:不等式可化为,其解集为,由根与系数的关系可知,解得,经检验时满足题意.法二:由题意知,原不等式所对应的方程的两个实数根为和4,将(或4)代入方程计算可得,经检验时满足题意.(2)法一:由题意可知恒成立,①若,则恒成立,符合题意。②若,则恒成立,而,当且仅当时取等号,所以,即.故实数的取值范围为.法二:二次函数的对称轴为.①若,即,函数在上单调递增,恒成立,故;②若,即,此时在上单调递减,在上单调递增,由得.故;③若,即,此时函数在上单调递减,由得,与矛盾,故不存在.综上所述,实数的取值范围为.【点睛】本题主要考查一元二次不等式的性质,不等式恒成立中含参问题,意在考查学生的分析能力,计算能力及转化能力,难度较大.18、(Ⅰ)(Ⅱ)【解析】
(1)化简集合,按并集的定义,即可求解;(2)得,结合数轴,确定集合端点位置,即可求解.【详解】解:(Ⅰ)集合,集合,∴;(Ⅱ)由,且,∴,由题意知,∴,解得,∴实数的取值范围是.【点睛】本题考查集合间的运算,考查集合的关系求参数,属于基础题.19、(1)证明见解析,(2)【解析】
(1)由,两边取倒数,得到,根据等差数列的定义证明等差数列,,再利用通项公式求得,从而得到..(2)根据(1)的结论,再用错位相减法求其前n项和.【详解】(1)因为,所以,即,所以是首项为1,公差为的等差数列,所以,即.(2)由(1)知所以①两边同乘以得:②①-②得,,,所以.【点睛】本题主要考查了数列的证明及错位相减法求和,还考查了运算求解的能力,属于难题.20、(1);(2).【解析】试题分析:(1)当时,可得,即为,由对数函数的单调性,可得不不等式的解集;(2)由在上恒成立,得在上恒成立,讨论,根据的范围,由恒成立思想,可得的范围.试题解析:(1)当时,解不等式,得,即,故不等式的解集为.(2)由在恒成立,得在恒成立,①当时,有,得,②当时,有,得,故实数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环保厕所项目规划申请报告006
- 内科护士劳动合同
- 住宅室内装饰装修工程合同
- 辽东学院《工程招投标与合同管理》2023-2024学年第一学期期末试卷
- 防溺水安全演讲三分钟
- 《供配电技术》6.4 教案
- 高中青春的议论文
- 生日宴会致辞(20篇)
- 防溺水安全责任书
- 鸿禾公寓中国城全程策划方案
- 数学史简介课件可编辑全文
- 危大工程清单及安全管理措施(样表)-纯图版
- 中医中药与免疫
- 2024中国东方航空技术限公司全球校园招聘高频500题难、易错点模拟试题附带答案详解
- 2025届江苏省苏州市梁丰八年级数学第一学期期末学业质量监测试题含解析
- 2024至2030年成都市酒店市场前景调查及投资研究报告
- XXX200MW光伏发电项目施工组织设计
- 2024-2030年中国氦液化系统市场深度调查与未来发展前景预测研究报告
- 2024年历年中级经济师工商管理考试真题及答案
- 肋骨骨折讲课课件
- 2024秋国家开放大学《管理英语1》形考任务1-8参考答案
评论
0/150
提交评论