版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省咸阳市兴平市西郊中学数学高一下期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,为了测量山坡上灯塔的高度,某人从高为的楼的底部处和楼顶处分别测得仰角为,,若山坡高为,则灯塔高度是()A. B. C. D.2.一空间几何体的三视图如下图所示,则该几何体的体积为()A.1 B.3 C.6 D.23.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于()A. B.480 C. D.4.曲线与曲线的()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等5.已知,则的值构成的集合为()A. B. C. D.6.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.7.已知一组正数的平均数为,方差为,则的平均数与方差分别为()A. B. C. D.8.点是角终边上一点,则的值为()A. B. C. D.9.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥为鳖臑,平面,三棱锥的四个顶点都在球的球面上,则球的表面积为()A. B. C. D.10.在△ABC中,D是边BC的中点,则=A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设数列满足,,,,______.12.在中,角为直角,线段上的点满足,若对于给定的是唯一确定的,则_______.13.若圆与圆的公共弦长为,则________.14.不等式的解为_______.15.已知向量,,若,则实数__________.16.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四边形中,,,.(1)若,求的面积;(2)若,,求的长.18.已知圆心在轴的正半轴上,且半径为2的圆被直线截得的弦长为.(1)求圆的方程;(2)设动直线与圆交于两点,则在轴正半轴上是否存在定点,使得直线与直线关于轴对称?若存在,请求出点的坐标;若不存在,请说明理由.19.在平面直角坐标系中,已知A(-1,0),B(2,0),动点M(x,y)满足MAMB=12,设动点(1)求动点M的轨迹方程,并说明曲线C是什么图形;(2)过点1,2的直线l与曲线C交于E,F两点,若|EF|=455(3)设P是直线x+y+8=0上的点,过P点作曲线C的切线PG,PH,切点为G,H,设C'(-2,0),求证:过20.在中,分别是角的对边,且.(1)求的大小;(2)若,求的面积.21.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
过点作于点,过点作于点,在中由正弦定理求得,在中求得,从而求得灯塔的高度.【详解】过点作于点,过点作于点,如图所示,在中,由正弦定理得,,即,,在中,,又山高为,则灯塔的高度是.故选.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.2、D【解析】
几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.【详解】由三视图可知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2.四棱锥的体积是.故选D.【点睛】本题考查由三视图求几何体的体积,由三视图求几何体的体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.3、A【解析】
由题意知,此球是棱长为6的正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为6,再由球的体积公式求解即可.【详解】解:由已知可得球的直径为6,故半径为3,其体积是,故选:.【点睛】本题考查长方体内切球的几何特征,以及球的体积公式,属于基础题.4、D【解析】
首先将后面的曲线化简为标准形式,分别求两个曲线的几何性质,比较后得出选项.【详解】首先化简为标准方程,,由方程形式可知,曲线的长轴长是8,短轴长是6,焦距是,离心率,,的长轴长是,短轴长是,焦距是,离心率,所以离心率相等.故选D.【点睛】本题考查了椭圆的几何性质,属于基础题型.5、B【解析】
根据的奇偶分类讨论.【详解】为偶数时,,为奇数时,设,则.∴的值构成的集合是.故选:B.【点睛】本题考查诱导公式,掌握诱导公式是解题基础.注意诱导公式的十字口诀:奇变偶不变,符号看象限.6、D【解析】
由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.7、C【解析】
根据平均数的性质和方差的性质即可得到结果.【详解】根据平均数的线性性质,以及方差的性质:将一组数据每个数扩大2倍,且加1,则平均数也是同样的变化,方差变为原来的4倍,故变换后数据的平均数为:;方差为4.故选:C.【点睛】本题考查平均数和方差的性质,属基础题.8、A【解析】
利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【详解】由三角函数的定义可得,由诱导公式可得.故选A.【点睛】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.9、C【解析】由题意,PA⊥面ABC,则为直角三角形,PA=3,AB=4,所以PB=5,又△ABC是直角三角形,所以∠ABC=90°,AB=4,AC=5所以BC=3,因为为直角三角形,经分析只能,故,三棱锥的外接球的圆心为PC的中点,所以则球的表面积为.故选C.10、C【解析】分析:利用平面向量的减法法则及共线向量的性质求解即可.详解:因为是的中点,所以,所以,故选C.点睛:本题主要考查共线向量的性质,平面向量的减法法则,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、8073【解析】
对分奇偶讨论求解即可【详解】当为偶数时,当为奇数时,故当为奇数时,故故答案为8073【点睛】本题考查数列递推关系,考查分析推理能力,对分奇偶讨论发现规律是解决本题的关键,是难题12、【解析】
设,根据已知先求出x的值,再求的值.【详解】设,则.依题意,若对于给定的是唯一的确定的,函数在(1,)是增函数,在(,+)是减函数,所以,此时,.故答案为【点睛】本题主要考查对勾函数的图像和性质,考查差角的正切的计算和同角的三角函数的关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.14、【解析】
把不等式转化为,即可求解.【详解】由题意,不等式,等价于,解得.即不等式的解为故答案为:.【点睛】本题主要考查了分式不等式的求解,其中解答中熟记分式不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】
根据平面向量时,列方程求出的值.【详解】解:向量,,若,则,即,解得.故答案为:.【点睛】本题考查了平面向量的坐标运算应用问题,属于基础题.16、262【解析】
根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【点睛】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由余弦定理求出BC,由此能求出△ABC的面积.(2)设∠BAC=θ,AC=x,由正弦定理得从而,在中,由正弦定理得,建立关于θ的方程,由此利用正弦定理能求出sin∠CAD.再利用余弦定理可得结果.【详解】(1)因为,,,所以,即,所以.所以.(2)设,,则,在中,由正弦定理得:,所以;在中,,所以.即,化简得:,所以,所以,,所以在中,.即,解得或(舍).【点睛】本题考查正、余弦定理在解三角形中的应用,考查了引入角的技巧方法,考查运算求解能力,考查函数与方程思想,是中档题.18、(1)(2)当点为时,直线与直线关于轴对称,详见解析【解析】
(1)设圆的方程为,由垂径定理求得弦长,再由弦长为可求得,从而得圆的方程;(2)假设存在定点,使得直线与直线关于轴对称,则,同时设,直线方程代入圆方程后用韦达定理得,即为,代入可求得,说明存在.【详解】(1)设圆的方程为:圆心到直线的距离根据垂径定理得,,解得,,故圆的方程为(2)假设存在定点,使得直线与直线关于轴对称,那么,设联立得:由.故存在,当点为时,直线与直线关于轴对称.【点睛】本题考查圆的标准方程,考查直线与圆的位置关系.在解决存在性命题时,一般都是假设存在,然后根据已知去推理求解.象本题定点问题,就是假设存在定点,用设而不求法推理求解,解出值,如不能解出值,说明不存在.19、(1)动点M的轨迹方程为(x+2)2+y2=4,曲线C是以(-2,0)为圆心,2为半径的圆(2)l的方程为2x-y=0或【解析】
(1)利用两点间的距离公式并结合条件MAMB=12,化简得出曲线C的方程,根据曲线(2)根据几何法计算出圆心到直线的距离d=455,对直线l分两种情况讨论,一是斜率不存在,一是斜率存在,结合圆心到直线的距离d=(3)设点P的坐标为m,-m-8,根据切线的性质得出PG⊥GC',从而可得出过G、P、C'x2【详解】(1)由题意得(x+1)2+y所以动点M的轨迹方程为(x+2)2曲线C是以(-2,0)为圆心,2为半径的圆;(2)①当直线l斜率不存在时,x=1,不成立;②当直线l的斜率存在时,设l:y-2=k(x-1),即kx-y+2-k=0,圆心C(-2,0)到l的距离为d=-3k+21+∴d2=165=(2-3k)2∴l的方程为2x-y=0或2x-29y+56=0;(3)证明:∵P在直线x+y+8=0上,则设P(m,-m-8)∵C'为曲线C的圆心,由圆的切线的性质可得PG⊥GC',∴经过G,P,C'的三点的圆是以PC'为直径的圆,则方程为(x+2)(x-m)+y(y+m+8)=0,整理可得x2令x2+y解得x=-2y=0或则有经过G,P,C'三点的圆必过定点,所有定点的坐标为(-2,0),(-5,-3).【点睛】本题考查动点轨迹方程的求法,考查直线截圆所得弦长的计算以及动圆所过定点的问题,解决圆所过定点问题,关键是要将圆的方程求出来,对带参数的部分提公因式,转化为方程组求公共解问题.20、(1)(2)【解析】试题分析:(Ⅰ)先由正弦定理将三角形的边角关系转化为角角关系,再利用两角和的正弦公式和诱导公式进行求解;(Ⅱ)先利用余弦定理求出,再利用三角形的面积公式进行求解.试题解析:(Ⅰ)由又所以.(Ⅱ)由余弦定理有,解得,所以点睛:在利用余弦定理进行求解时,往往利用整体思想,可减少计算量,若本题中的.21、(1);(2);(3).【解析】
(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业水稳料供应商合同
- 铝型材购销合同书范本
- 花岗岩选购合同样本
- 项目咨询服务合同评估全文
- 电气安装工程分包协议样本
- 购房补充协议的作用和意义
- 商务秘书社交媒体营销合同
- 酒店应急预案服务合同
- 英文版购销合同交流
- 房屋买卖定金合同判决书案例借鉴
- 加油站安全检查表分析(SCL)及评价记录
- 丰田车系卡罗拉(双擎)轿车用户使用手册【含书签】
- 幼儿园突发安全事件事故处置措施
- 现代药物制剂与新药研发智慧树知到答案章节测试2023年苏州大学
- 肺结核的学习课件
- 心肺复苏术最新版
- 2023-2024学年贵州省贵阳市小学数学六年级上册期末自测提分卷
- GB/T 9115.2-2000凹凸面对焊钢制管法兰
- 永久避难硐室安装施工组织措施
- 元旦节前安全教育培训-教学课件
- 芯片工艺流程课件1
评论
0/150
提交评论