2023-2024学年广东省汕头市贵屿中学高一下数学期末综合测试试题含解析_第1页
2023-2024学年广东省汕头市贵屿中学高一下数学期末综合测试试题含解析_第2页
2023-2024学年广东省汕头市贵屿中学高一下数学期末综合测试试题含解析_第3页
2023-2024学年广东省汕头市贵屿中学高一下数学期末综合测试试题含解析_第4页
2023-2024学年广东省汕头市贵屿中学高一下数学期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广东省汕头市贵屿中学高一下数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若变量,且满足约束条件,则的最大值为()A.15 B.12 C.3 D.2.为了得到函数y=sin(2x-πA.向右平移π6个单位 B.向右平移πC.向左平移π6个单位 D.向左平移π3.直线与圆相交于两点,则弦长()A. B.C. D.4.如图所示,已知正三棱柱的所有棱长均为1,则三棱锥的体积为()A. B. C. D.5.直线的倾斜角不可能为()A. B. C. D.6.已知,实数、满足关系式,若对于任意给定的,当在上变化时,的最小值为,则()A. B. C. D.7.在中,角所对的边分别为,若,,,则等于()A.4 B. C. D.8.已知两条直线与两个平面,给出下列命题:①若,则;②若,则;③若,则;④若,则;其中正确的命题个数为A.1 B.2 C.3 D.49.已知变量和满足相关关系,变量和满足相关关系.下列结论中正确的是()A.与正相关,与正相关 B.与正相关,与负相关C.与负相关,与y正相关 D.与负相关,与负相关10.已知等差数列的公差,前项和为,则对正整数,下列四个结论中:(1)成等差数列,也可能成等比数列;(2)成等差数列,但不可能成等比数列;(3)可能成等比数列,但不可能成等差数列;(4)不可能成等比数列,也不叫能成等差数列.正确的是()A.(1)(3) B.(1)(4) C.(2)(3) D.(2)(4)二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线分别与x轴、y轴交于A,B两点,则等于________.12.已知平行四边形的周长为,,则平行四边形的面积是_______13.如图1,动点在以为圆心,半径为1米的圆周上运动,从最低点开始计时,用时4分钟逆时针匀速旋转一圈后停止.设点的纵坐标(米)关于时间(分)的函数为,则该函数的图像大致为________.(请注明关键点)14.在△中,三个内角、、的对边分别为、、,若,,,则________15.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________.16.在中,,,是的中点.若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线的方程为.(1)求直线所过定点的坐标;(2)当时,求点关于直线的对称点的坐标;(3)为使直线不过第四象限,求实数的取值范围.18.在中,角A,B,C,的对应边分别为,且.(Ⅰ)求角B的大小;(Ⅱ)若的面积为,,D为AC的中点,求BD的长.19.已知等差数列满足.(1)求的通项公式;(2)设等比数列满足,求的前项和.20.设数列是等差数列,其前n项和为;数列是等比数列,公比大于0,其前项和为.已知,,,.(1)求数列和数列的通项公式;(2),求正整数n的值.21.在平面直角坐标系xOy中,曲线与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.(1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A,B,C三点的圆过定点,并求出该定点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

作出可行域,采用平移直线法判断何处取到最大值.【详解】画出可行域如图阴影部分,由得,目标函数图象可看作一条动直线,由图形可得当动直线过点时,.故选A.【点睛】本题考查线性规划中线性目标函数最值的计算,难度较易.求解线性目标函数的最值时,采用平移直线法是最常规的.2、A【解析】

根据函数平移变换的方法,由2x→2x-π3即2x→2(x-π【详解】根据函数平移变换,由y=sin2x变换为只需将y=sin2x的图象向右平移π6【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.3、D【解析】试题分析:圆心到直线的距离为,所以弦长为.考点:直线与圆的位置关系.4、A【解析】

利用等体法即可求解.【详解】三棱锥的体积等于三棱锥的体积,因此,三棱锥的体积为,故选:A.【点睛】本题考查了等体法求三棱锥的体积、三棱锥的体积公式,考查了转化与化归思想的应用,属于基础题.5、D【解析】

根据直线方程,分类讨论求得直线的斜率的取值范围,进而根据倾斜角和斜率的关系,即可求解,得到答案.【详解】由题意,可得当时,直线方程为,此时倾斜角为;当时,直线方程化为,则斜率为:,即,又由,解得或,又由且,所以倾斜角的范围为,显然A,B都符合,只有D不符合,故选D.【点睛】本题主要考查了直线方程的应用,以及直线的倾斜角和斜率的关系,着重考查了分类讨论思想,以及推理与运算能力.6、A【解析】

先计算出,然后利用基本不等式可得出的值.【详解】,由基本不等式得,当且仅当时,由于,即当时,等号成立,因此,,故选:A.【点睛】本题考查极限的计算,考查利用基本不等式求最值,解题的关键就是利用数列的极限计算出带的表达式,并利用基本不等式进行计算,考查运算求解能力,属于中等题.7、B【解析】

根据正弦定理,代入数据即可。【详解】由正弦定理,得:,即,即:解得:选B。【点睛】此题考查正弦定理:,代入数据即可,属于基础题目。8、A【解析】

结合线面平行定理和举例判断.【详解】若,则可能平行或异面,故①错误;若,则可能与的交线平行,故②错误;若,则,所以,故③正确;若,则可能平行,相交或异面,故④错误;故选A.【点睛】本题线面关系的判断,主要依据线面定理和举例排除.9、B【解析】

根据相关关系式,由一次项系数的符号即可判断是正相关还是负相关.【详解】变量和满足相关关系,由可知变量和为正相关变量和满足相关关系,由,可知变量和为负相关所以B为正确选项故选:B【点睛】本题考查了通过相关关系式子判断正负相关性,属于基础题.10、D【解析】试题分析:根据等差数列的性质,,,,因此(1)错误,(2)正确,由上显然有,,,,故(3)错误,(4)正确.即填(2)(4).考点:等差数列的前项和,等差数列与等比数列的定义.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

分别求得A,B的坐标,再用两点间的距离公式求解.【详解】根据题意令得所以令得所以所以故答案为:5【点睛】本题主要考查点坐标的求法和两点间的距离公式,还考查了运算求解的能力,属于基础题.12、【解析】

设,根据条件可以求出,两边平方可以得到关系式,由余弦定理可以表示出,把代入得到的关系式,联立求出的值,过作垂直于,设,则可以表示,利用勾股定理,求出的值,确定长,即求出平行四边形的面积【详解】设又,由余弦定理将代入,得到将(2)代入(1)得到可以解得:(另一种情况不影响结果),过作垂直于,设,则,所以填写【点睛】几何题如果关系量理清不了,可以尝试作图,引入相邻边的参数,通过方程把参数求出,平行四边形问题可以通过转化变为三角形问题,进而把问题简单化.13、【解析】

根据题意先得出,再画图.【详解】解:设,,,,,则当时,处于最低点,则,,可画图为:故答案为:【点睛】本题考查了三角模型的实际应用,关键是根据题意建立函数模型,属中档题.14、【解析】

利用正弦定理求解角,再利用面积公式求解即可.【详解】由,因为,故,.故.故答案为:【点睛】本题主要考查了解三角形的运用,根据题中所给的边角关系选择正弦定理与面积公式等.属于基础题型.15、【解析】试题分析:根据正余弦函数的定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.16、【解析】

在中,由已知利用余弦定理可得,结合,解得,可求,在中,由余弦定理可得的值.【详解】由题意,在中,由余弦定理可得:可得:所以:…………①又……………②所以联立①②,解得.所以在中,由余弦定理得:即故答案为:【点睛】本题考查利用余弦定理解三角形,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】

(1)把直线化简为,所以直线过定点(1,1);(2)设B点坐标为,利用轴对称的性质列方程可以解得;(3)把直线化简为,由直线不过第四象限,得,解出即可.【详解】(1)直线的方程化简为,点满足方程,故直线所过定点的坐标为.(2)当时,直线的方程为,设点的坐标为,列方程组解得:,,故点关于直线的对称点的坐标为,(3)把直线方程化简为,由直线不过第四象限,得,解得,即的取值范围是.【点睛】本题考查直线方程过定点,以及点关于直线对称的问题,直线斜截式方程的应用,属于基础题.18、(I);(II)【解析】

(I)由正弦定理得,展开结合两角和的正弦整理求解;(Ⅱ)由面积得,利用平方求解即可【详解】(I),由正弦定理得整理得,则,,.(II),,两边平方得【点睛】本题考查正弦定理及两角和的正弦,三角形内角和定理,考查向量的数量积及模长,准确计算是关键,是中档题19、(1)(2)【解析】

(1)根据基本元的思想,将已知条件转化为的形式,列方程组,解方程组可求得的值.并由此求得数列的通项公式.(2)利用(1)的结论求得的值,根据基本元的思想,,将其转化为的形式,由此求得的值,根据等比数列前项和公式求得数列的前项和.【详解】解:(1)设的公差为,则由得,故的通项公式,即.(2)由(1)得.设的公比为,则,从而,故的前项和.【点睛】本小题主要考查利用基本元的思想解有关等差数列和等比数列的问题,属于基础题.20、(1);;(2)n的值为1.【解析】

(1)根据等比数列与等差数列,分别设公比与公差再用基本量法求解即可.(2)分别利用等差等比数列的求和公式求解得与,再代入整理求解二次方程即可.【详解】解:(1)设等比数列的公比为q,由,,可得.∵,可得.故;设等差数列的公差为d,由,得,由,得,∴.故;(2)由是等差数列,且,得由是等比数列,且,得.可得.由,可得,整理得:,解得(舍)或.∴n的值为1.【点睛】本题主要考查了等比等差数列的基本量法以及的等差等比数列的求和计算.属于中档题.21、(1)存在,(2)证明见解析,圆方程恒过定点或【解析】

(1)将曲线Γ方程中的y=1,得x2﹣mx+2m=1.利用韦达定理求出C,通过坐标化,求出m得到所求圆的方程.(2)设过A,B,C的圆P的方程为(x﹣a)2+(y﹣b)2=r2列出方程组利用圆系方程,推出圆P方程恒过定点即可.【详解】由曲线Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.设A(x1,1),B(x2,1),则可得△=m2﹣8m>1,x1+x2=m,x1x2=2m.令

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论