2019年江苏省镇江市中考数学试卷_第1页
2019年江苏省镇江市中考数学试卷_第2页
2019年江苏省镇江市中考数学试卷_第3页
2019年江苏省镇江市中考数学试卷_第4页
2019年江苏省镇江市中考数学试卷_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年江苏省镇江市中考数学试卷

一、填空题(本大题共有12小题,每小题2分,共计24分.)

1.(2分)-2019的相反数是.

2.(2分)27的立方根为.

3.(2分)一组数据4,3,尤,1,5的众数是5,贝ijx=.

4.(2分)若代数式有意义,则实数x的取值范围是.

5.(2分)氢原子的半径约为0.00000000005m,用科学记数法把0.00000000005表示

为.

6.(2分)已知点A(-2,yi)、8(-1,")都在反比例函数>=-2■的图象上,则yiy2.(填

X

或"V”)

7.(2分)计算:V12-73=.

8.(2分)如图,直线ZkABC的顶点C在直线b上,边A8与直线6相交于点D若

是等边三角形,ZA=20°,则Nl=°.

a

9.(2分)若关于x的方程/-2x+m=0有两个相等的实数根,则实数m的值等于.

10.(2分)将边长为1的正方形A8CD绕点C按顺时针方向旋转到FECG的位置(如图),

使得点。落在对角线CP上,EF与相交于点H,则〃£)=.(结果保留根号)

11.(2分)如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1,2,

分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”

的概率是L,则转盘3中标有数字1的扇形的圆心角的度数是

9

12.(2分)已知抛物线y=ax2+4ax+4a+\(aWO)过点A(m,3),B(n,3)两点,若线

段AB的长不大于4,则代数式/+a+i的最小值是.

二、选择题(本大题共有5小题,每小题3分,共计15分,在每小题所给出的四个选项中

恰有一项符合题目要求)

13.(3分)下列计算正确的是()

A./.°3=“6B.a74-a3=a4C.(/)5=08D.(ab)~=akr

14.(3分)一个物体如图所示,它的俯视图是()

15.(3分)如图,四边形A8CZ)是半圆的内接四边形,48是直径,DC=CB.若/C=110°,

C.65°D.70°

16.(3分)下列各数轴上表示的x的取值范围可以是不等式组的解集的是

(2a-l)x-6<0

()

A.-3-20

B.02

C.023

-i-----------1-----1-----1------------->

D.-201

17.(3分)如图,菱形ABC。的顶点3、C在x轴上(8在C的左侧),顶点A、。在x轴

上方,对角线8。的长是点E(-2,0)为BC的中点,点P在菱形ABC。的边

上运动.当点E(0,6)到EP所在直线的距离取得最大值时,点尸恰好落在AB的中点

三、解答题(本大题共有11小题,共计81分。解答时应写出必要的文字说明、证明过程

或演算步骤。)

18.(8分)(1)计算:(圾-2)°+(^-)-1-2cos60°;

3

(2)化简:(1+」-)+*

2

X-1x-l

19.(10分)(1)解方程:上工=小一+1;

x-2x-2

(2)解不等式:4(x-1)-L<x

2

20.(6分)如图,四边形ABC。中,AD//BC,点、E、尸分别在A。、BC上,AE=CF,过

点A、C分别作跖的垂线,垂足为G、H.

(1)求证:AAGEmACHF;

(2)连接AC,线段G”与AC是否互相平分?请说明理由.

21.(6分)小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,

请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.

22.(6分)如图,在△ABC中,AB=AC,过AC延长线上的点。作交BC的延

长线于点。,以。为圆心,长为半径的圆过点8.

(1)求证:直线A8与。。相切;

(2)若AB=5,。。的半径为12,贝!Jtan/BDO=.

23.(6分)如图,点A(2,”)和点。是反比例函数>=皿(m>0,x>0)图象上的两点,

X

一次函数丁=丘+3(%#0)的图象经过点A,与y轴交于点8,与X轴交于点C,过点。

作。轴,垂足为E,连接。4,OD.已知△Q48与△ODE的面积满足以0”:S^ODE

=3:4.

(1)S/\OAB=,m=

(2)已知点尸(6,0)在线段OE上,当/尸OE=NC8O时,求点。的坐标.

24.(6分)在三角形纸片ABC(如图1)中,ZBAC=78°,AC=10.小霞用5张这样的

三角形纸片拼成了一个内外都是正五边形的图形(如图2).

(1)ZABC^°;

(2)求正五边形GHMNC的边GC的长.

参考值:sin78°心0.98,cos78°=0.21,tan78°-4.7.

25.(6分)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对

最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的

每班各类别得分人数的条形统计图(不完整).

各类别的得分表

得分类别

0A:没有作答

1B:解答但没有正确

3C:只得到一个正确答案

6O:得到两个正确答案,解答完全正确

已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试

题的平均得分为3.78分.请解决如下问题:

(1)九(2)班学生得分的中位数是;

(2)九(1)班学生中这道试题作答情况属于8类和C类的人数各是多少?

每班各类别得分人数的条形统计图

地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的O。).人们在

北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古

人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这

样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉

线的夹角a的大小是变化的.

【实际应用】

观测点A在图1所示的。。上,现在利用这个工具尺在点A处测得a为31。,在点A所

在子午线往北的另一个观测点2,用同样的工具尺测得a为67。.尸。是。。的直径,

PQLON.

(1)求NPOB的度数;

(2)已知0P=6400km,求这两个观测点之间的距离即上AB的长.(豆取3.1)

27.(10分)如图,二次函数y=-d+4x+5图象的顶点为O,对称轴是直线1,一次函数y

=2x+l的图象与x轴交于点4且与直线D4关于/的对称直线交于点艮

5

(1)点。的坐标是;

(2)直线/与直线A8交于点C,N是线段。C上一点(不与点。、C重合),点N的纵

坐标为〃.过点N作直线与线段ZM、08分别交于点P、Q,使得△。尸。与△D4B相似.

①当"=&_时,求。尸的长;

5

②若对于每一个确定的n的值,有且只有一个△。尸。与相似,请直接写出n的取

值范围.

28.(11分)学校数学兴趣小组利用机器人开展数学活动.

在相距150个单位长度的直线跑道A8上,机器人甲从端点A出发,匀速往返于端点4

8之间,机器人乙同时从端点8出发,以大于甲的速度匀速往返于端点8、A之间.他们

到达端点后立即转身折返,用时忽略不计.

兴趣小组成员探究这两个机器人迎面相遇的情况,这里的”迎面相遇“包括面对面相遇、

在端点处相遇这两种.

【观察】

①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单

位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;

②若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为40个单位长度,

则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;

【发现】

设这两个机器人第■次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们

第二次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.兴趣小组成员发现了

y与x的函数关系,并画出了部分函数图象(线段。尸,不包括点。,如图2所示).

;

②分别求出各部分图象对应的函数表达式,并在图2中补全函数图象;

【拓展】

设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们

第三次迎面相遇时,相遇地点与点A之间的距离为y个单位长度.

若这两个机器人第三次迎面相遇时,相遇地点与点A之间的距离j不超过60个单位长度,

则他们第一次迎面相遇时,相遇地点与点A之间的距离尤的取值范围是.(直接

写出结果)

2019年江苏省镇江市中考数学试卷

参考答案与试题解析

一、填空题(本大题共有12小题,每小题2分,共计24分.)

1.(2分)-2019的相反数是2019.

【考点】14:相反数.

【分析】直接利用相反数的定义进而得出答案.

【解答】解:-2019的相反数是:2019.

故答案为:2019.

【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.

2.(2分)27的立方根为3.

【考点】24:立方根.

【分析】找到立方等于27的数即可.

【解答】解::33=27,

;.27的立方根是3,

故答案为:3.

【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.

3.(2分)一组数据4,3,x,1,5的众数是5,则x=5.

【考点】W5:众数.

【分析】根据众数的概念求解可得.

【解答】解::数据4,3,x,1,5的众数是5,

••x~~5,

故答案为:5.

【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若

几个数据频数都是最多且相同,此时众数就是这多个数据.

4.(2分)若代数式有意义,则实数x的取值范围是尤24.

【考点】72:二次根式有意义的条件.

【分析】根据被开方数大于等于0列不等式求解即可.

【解答】解:由题意得x-4^0,

解得尤24.

故答案为:x24.

【点评】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否

则二次根式无意义.

5.(2分)氢原子的半径约为0.00000000005m,用科学记数法把0.00000000005表示为5

xitr”.

【考点】1J:科学记数法一表示较小的数.

【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为aX10~与较大

数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数

字前面的0的个数所决定.

【解答】解:用科学记数法把0.00000000005表示为5义10一U.

故答案为:5X10-11.

【点评】本题考查用科学记数法表示较小的数,一般形式为aX10”,其中

n为由原数左边起第一个不为零的数字前面的0的个数所决定.

6.(2分)已知点A(-2,yi)、B(-1,”)都在反比例函数y=-2的图象上,则yi<

x

(填“>”或“<”)

【考点】G6:反比例函数图象上点的坐标特征.

【分析】反比例函数y=-2的图象在第二象限,在第二象限内,y随尤的增大而增大,

X

根据工的值大小,得出y值大小.

【解答】解:•..反比例函数尸-2的图象在二、四象限,而A(-2,yi)、B(-1,”)

x

都在第二象限,

.•.在第二象限内,y随尤的增大而增大,

V-2<-1

故答案为:<

【点评】此题主要考查了反比例函数的性质,当上<0时,在每个象限内,y随尤的增大

而增大,由尤的值变化得出y的值变化情况;也可以把尤的值分别代入关系式求出yi、

”再作比较亦可.

7.(2分)计算:V12-/3=_V3_.

【考点】78:二次根式的加减法.

【分析】先化简信=2«,再合并同类二次根式即可.

【解答】解:V12^3=273-73=73.

故答案为:V3-

【点评】本题主要考查了二次根式的加减,属于基础题型.

8.(2分)如图,直线a〃6,ZkABC的顶点C在直线6上,边与直线6相交于点D若

△BCZ)是等边三角形,ZA=20°,则Nl=40°.

a

【考点】JA:平行线的性质;KK:等边三角形的性质.

【分析】根据等边三角形的性质得到/2。。=60°,根据平行线的性质求出N2,根据三

角形的外角性质计算,得到答案.

【解答】解::△80是等边三角形,

:.ZBDC^6Q°,

':a//b,

.•.N2=NBZ)C=60°,

由三角形的外角性质可知,Z1=Z2-ZA=40°,

故答案为:40.

B

【点评】本题考查的是等边三角形的性质、平行线的性质,掌握三角形的三个内角都是

600是解题的关键.

9.(2分)若关于彳的方程/-2无+加=0有两个相等的实数根,则实数m的值等于1.

【考点】AA:根的判别式.

【分析】利用判别式的意义得到4=(-2)2-4m=0,然后解关于机的方程即可.

【解答】解:根据题意得△=(-2)2-4〃Z=0,

解得m=L

故答案为1.

【点评】本题考查了根的判别式:一元二次方程o?+bx+c=0(aWO)的根与△=&?-4ac

有如下关系:当^>。时,方程有两个不相等的实数根;当△=()时,方程有两个相等的

实数根;当4<0时,方程无实数根.

10.(2分)将边长为1的正方形ABCD绕点C按顺时针方向旋转到BECG的位置(如图),

使得点。落在对角线CF上,EF与相交于点”,则HD=遮-1.(结果保留根

号)

【考点】LE:正方形的性质;R2:旋转的性质.

【分析】先根据正方形的性质得到CD=1,ZCDA=90°,再利用旋转的性质得CF=V2>

根据正方形的性质得/CFZ)E=45°,则可判断为等腰直角三角形,从而计算CF

-CD即可.

【解答】解::四边形48。为正方形,

;.CD=1,ZCDA^90a,

:边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对

角线CF±,

:.CF=®NCFDE=45°,

ADFH为等腰直角三角形,

:.DH=DF=CF-CD=\[2-1.

故答案为1.

【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所

连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.

11.(2分)如图,有两个转盘A、B,在每个转盘各自的两个扇形区域中分别标有数字1,2,

分别转动转盘A、B,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”

的概率是L,则转盘B中标有数字1的扇形的圆心角的度数是80

【考点】X6:列表法与树状图法.

【分析】先根据题意求出转盘3中指针落在标有数字1的扇形区域内的概率,再根据圆

周角等于360°计算即可.

【解答】解:设转盘B中指针落在标有数字1的扇形区域内的概率为x,

根据题意得:Ly』,

29

解得xg,

9

转盘8中标有数字1的扇形的圆心角的度数为:360°X-2=8O°.

9

故答案为:80.

【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况

数之比.

12.(2分)已知抛物线>=62+4依+4.+1(a#0)过点ACm,3),B(n,3)两点,若线

段AB的长不大于4,则代数式/+°+1的最小值是1.

—4―

【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H7:二次函数的最

值.

【分析】根据题意得4°+123,解不等式求得。》上,把》=工代入代数式即可求得.

22

【解答】解::抛物线y=o?+4"+4a+lQW0)过点A(m,3),B(n,3)两点,

.m+n_4a=_?

..•线段AB的长不大于4,

;.4。+123

2

/.a^+a+Y的最小值为:(工)2+—+1——;

224

故答案为工.

4

【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,根据题意得出4.+1

23是解题的关键.

二、选择题(本大题共有5小题,每小题3分,共计15分,在每小题所给出的四个选项中

恰有一项符合题目要求)

13.(3分)下列计算正确的是()

A.a2*a3=a6B.«74-a3=a4C.(a3)5=a8D.(ab)2=ab2

【考点】46:同底数暴的乘法;47:基的乘方与积的乘方;48:同底数哥的除法.

【分析】直接利用同底数累的乘除运算法则、积的乘方运算法则、累的乘方运算法则分

别化简得出答案.

【解答】解:4。2./=。5,故此选项错误;

B、aJ^-a3=a4,正确;

C、(/)5=/5,故此选项错误;

D、(ab)2=/序,故此选项错误;

故选:B.

【点评】此题主要考查了同底数募的乘除运算、积的乘方运算、累的乘方运算,正确掌

握相关运算法则是解题关键.

14.(3分)一个物体如图所示,它的俯视图是()

【考点】U2:简单组合体的三视图.

【分析】从图形的上方观察即可求解;

【解答】解:俯视图从图形上方观察即可得到,

故选:D.

【点评】本题考查几何体的三视图;熟练掌握组合体图形的观察方法是解题的关键.

15.(3分)如图,四边形A8CD是半圆的内接四边形,A8是直径,花=癌.若NC=110。,

则/A3C的度数等于()

A.55°B.60°C.65°D.70°

【考点】M4:圆心角、弧、弦的关系;M5:圆周角定理;M6:圆内接四边形的性质.

【分析】连接AC,根据圆内接四边形的性质求出根据圆周角定理求出/ACB、

ZCAB,计算即可.

【解答】解:连接4C,

:四边形ABC。是半圆的内接四边形,

/.ZZ)AB=180o-NC=70°,

VDC=CB.

ZCAB=^-ZDAB=35°,

2

VAB是直径,

ZACB=90°,

/.ZABC=90°-ZCAB^55°,

故选:A.

【点评】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互

补是解题的关键.

16.(3分)下列各数轴上表示的x的取值范围可以是不等式组1)的解集的是

(2a-l)x-6<0

【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.

【分析】由数轴上解集左端点得出a的值,代入第二个不等式,解之求出x的另外一个

范围,结合数轴即可判断.

【解答】解:由x+2>。得x>a-2,

A.由数轴知x>-3,则。=-1,-3x-6<0,解得x>-2,与数轴不符;

B.由数轴知x>0,则a=2,...3x-6<0,解得尤<2,与数轴相符合;

C.由数轴知x>2,则a=4,."x-GVO,解得与数轴不符;

7

D.由数轴知了>-2,则a=0,-尤-6<0,解得x>-6,与数轴不符;

故选:B.

【点评】本题主要考查解一元一次不等式组,解题的关键是掌握不等式组的解集在数轴

上的表示及解一元一次不等式的能力.

17.(3分)如图,菱形ABC。的顶点2、C在x轴上(8在C的左侧),顶点A、。在x轴

上方,对角线3。的长是2/15点E(-2,0)为BC的中点,点P在菱形ABC。的边

上运动.当点/(0,6)到£尸所在直线的距离取得最大值时,点尸恰好落在的中点

处,则菱形A8CD的边长等于()

【考点】D5:坐标与图形性质;L8:菱形的性质.

【分析】如图1中,当点尸是AB的中点时,作EGLPE于G,连接EF.首先说明点G

与点尸重合时,FG的值最大,如图2中,当点G与点E重合时,连接AC交8。于H,

PE交BD于J.设8c=2°.利用相似三角形的性质构建方程求解即可.

【解答】解:如图1中,当点P是A3的中点时,作BGLPE于G,连接EE

:.0E=2,0F=6,

•,.£F=^22+42=2VT0.

,:ZFGE=90°,

:.FGWEF,

当点G与E重合时,尸G的值最大.

如图2中,当点G与点E重合时,连接AC交2。于X,PE交BD于J.设BC=2a.

:.PE//AC,BJ=JH,

・・•四边形ABC。是菱形,

:.AC±BD,BH=DH=J^-,

36

C.PELBD,

:NBJE=ZEOF=ZPEF=90°,

ZEBJ=ZFEO,

.'.△BJESLEOF,

.BE=BJ

"EFEO'

VIO

・a=6

,,WTO--2-,

•.•Cl_5,

3

:.BC=2a=^-,

3

故选:A.

【点评】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段

最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,

属于中考选择题中的压轴题.

三、解答题(本大题共有11小题,共计81分。解答时应写出必要的文字说明、证明过程

或演算步骤。)

18.(8分)(1)计算:(&-2)°+(-1)-1-2cos60o;

3

(2)化简:(1+'一)

xTx2-l

【考点】2C:实数的运算;6C:分式的混合运算;6E:零指数暴;6F:负整数指数塞;

T5:特殊角的三角函数值.

【分析】(1)根据零指数幕、负整数指数幕的运算法则、特殊角的三角函数值计算;

(2)根据分式的混合运算法则计算.

【解答】解:(1)(V2-2)°+(工)1-2cos60°

3

=1+3-1

=3;

=(旦+J-)+x

X-1X-l

=x•(x+i)d)

X-lX

=x+l.

【点评】本题考查的是分式的混合运算、实数的混合运算,掌握它们的运算法则是解题

的关键.

19.(10分)(1)解方程:上工=_^_+1;

x-2x-2

(2)解不等式:4(x-1)-^<x

2

【考点】B3:解分式方程;C6:解一元一次不等式.

【分析】(1)方程两边同乘以(尤-2)化成整式方程求解,注意检验;

(2)按照去括号,移项,合并同类项,系数化为1来解即可.

【解答】解;(1)方程两边同乘以(x-2)得

2x=3+x-2

*.x=\

检验:将x=l代入(x-2)得1-2=-1W0

x=l是原方程的解.

・•・原方程的解是x=l.

(2)化简4(x-1)-上V九得

2

4x-4--<x

2

原不等式的解集为元<3.

2

【点评】本题分别考查了分式方程和一元一次不等式的求解问题,属于基础题型.

20.(6分)如图,四边形A8C®中,AD//BC,点、E、尸分别在A。、8C上,AE=CF,过

点A、C分别作斯的垂线,垂足为G、H.

(1)求证:AAGE义ACHF;

(2)连接AC,线段GH与AC是否互相平分?请说明理由.

【考点】KD:全等三角形的判定与性质.

【分析】(1)由垂线的性质得出NG=N//=90°,AG//CH,由平行线的性质和对顶角

相等得出NAEG=ZCFH,由AAS即可得出△AGE乌Z\C毋';

(2)连接AH、CG,由全等三角形的性质得出AG=CH,证出四边形AHCG是平行四边

形,即可得出结论.

【解答】(1)证明:CHIEF,

:./G=NH=90°,AG//CH,

':AD//BC,

:.ZDEF=ZBFE,

':ZAEG=ZDEF,ZCFH=ZBFE,

:.NAEG=/CFH,

2G=/H

在△AGE和△(?坂中,,ZAEG=ZCFH,

,AE=CF

△AGEg△CHF(AAS);

(2)解:线段GH与AC互相平分,理由如下:

连接48、CG,如图所示:

由(1)得:△AGE0ZXCHR

:.AG=CH,

\'AG//CH,

四边形AHCG是平行四边形,

,线段GH与AC互相平分.

【点评】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、平行线的性

质;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.

21.(6分)小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,

请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.

【考点】X6:列表法与树状图法.

【分析】根据题意画出树状图得出所有等情况数和小丽和小明在同一天值日的情况数,

然后根据概率公式即可得出答案.

【解答】解:根据题意画树状图如下:

周一周二周二

共有9种等情况数,其中小丽和小明在同一天值日的有3种,

则小丽和小明在同一天值日的概率是上=1.

93

【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所

有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解

题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总

情况数之比.

22.(6分)如图,在△ABC中,AB=AC,过AC延长线上的点。作交的延

长线于点。,以。为圆心,长为半径的圆过点艮

(1)求证:直线A3与O。相切;

(2)若48=5,。。的半径为12,贝!|tan/B£)O=2

一3一

【考点】KH:等腰三角形的性质;M5:圆周角定理;ME:切线的判定与性质;T7:解

直角三角形.

【分析】(1)连接。8,由等腰三角形的性质得出NABC=NACB,ZOBD=ZD,证出

ZOBD+ZABC=9Q°,得出48_LOB,即可得出结论;

(2)由勾股定理得出OA=/AB2+0B2=13,得出0c=O4-AC=8,再由三角函数定

义即可得出结果.

【解答】(1)证明:连接如图所示:

':AB=AC,

:.ZABC^ZACB,

':ZACB^ZOCD,

:.ZABC=ZOCD,

':OD±AO,

:.ZCOD=90°,

/.ZD+Z0CD^9Q°,

":OB=OD,

:.ZOBD=ZD,

:.ZOBD+ZABC=9Q°,

即乙420=90°,

:.AB±OB,

:点B在圆。上,

直线AB与。O相切;

(2)解:VZAB(?=90°,

''OA=VAB2+0B2=V52+122=13,

':AC=AB=5,

:.OC=OA-AC=8,

:.tanZBDO=^-=-^-=^

OD123

故答案为:2.

【点评】本题考查了切线的判定、等腰三角形的性质、直角三角形的性质、勾股定理以

及三角函数定义;熟练掌握切线的判定方法和等腰三角形的性质是解题的关键

23.(6分)如图,点A(2,n)和点。是反比例函数丫=则(m>0,x>0)图象上的两点,

一次函数〉=丘+3(左W0)的图象经过点A,与y轴交于点2,与x轴交于点C,过点。

作。轴,垂足为E,连接。4,0D.已知△Q4B与△。。£的面积满足SMAB:SAODE

=3:4.

(1)SAOAB=3,m—8;

(2)已知点尸(6,0)在线段OE上,当NPZ)E=NCB。时,求点。的坐标.

【考点】GB:反比例函数综合题.

【分析】(1)由一次函数解析式求得点8的坐标,易得的长度,结合点A的坐标和

三角形面积公式求得5AOAB=3,所以SAODE=4,由反比例函数系数k的几何意义求得m

的值;

(2)利用待定系数法确定直线AC函数关系式,易得点C的坐标;利用

ZCOB=/PED=90°判定△CBOsAPDE,根据该相似三角形的对应边成比例求得PE、

DE的长度,易得点。的坐标.

【解答】解:(1)由一次函数y=fcc+3知,B(0,3).

又点A的坐标是(2,”),

.,.5AOAB=^X3X2=3.

2

,:SAOAB:SAODE=3:4.

S/\ODE=4.

•・•点。是反比例函数丁=电(m>0,x>0)图象上的点,

X

m=5AODE=4,贝!Jm=8.

2

故答案是:3;8;

(2)由(1)知,反比例函数解析式是>=&.

X

2n=8,即n=4.

故A(2,4),将其代入>=履+3得到:2-3=4.

解得k=—.

2

,直线AC的解析式是:y=L+3.

2

令y=0,则氏+3=0,

••x=-6,

:.C(-6,0).

,OC=6.

由(1)知,08=3.

设。(a,b),则。E=b,PE=a-6.

,:ZPDE=ZCBO,ZCOB=ZPED=90°,

:ACBOS^PDE,

又ab=8②.

联立①②,得产2(舍去)或产

lb=-4lb=l

【点评】考查了反比例函数综合题,需要掌握待定系数法确定函数关系式,函数图象上

点的坐标特征,反比例函数系数k的几何意义,三角形的面积公式,相似三角形的判定

与性质等知识点,综合性较强,但是难度不是很大.

24.(6分)在三角形纸片ABC(如图1)中,/A4c=78°,AC=10.小霞用5张这样的

三角形纸片拼成了一个内外都是正五边形的图形(如图2).

(1)ZABC=30°;

(2)求正五边形GHMNC的边GC的长.

参考值:sin78°-0.98,cos78°=0.21,tan78°-4.7.

【考点】MM:正多边形和圆;T7:解直角三角形.

【分析】(1)根据多边形内角和定理、正五边形的性质计算;

(2)作CQLA8于Q,根据正弦的定义求出QC,根据直角三角形的性质求出BC,结合

图形计算即可.

【解答】解:(1)•••五边形是正五边形,

4p=(5-2)X180。=]08。,

5

NABC=ZBAF-NA4C=30°,

故答案为:30;

(2)作CQ_LAB于。,

在RtZXAQC中,sin/QAC=吗,

AC

QC=AC・sinZQAC^10X0.98=9.8,

在RtZkBQC中,ZABC=30°,

:.BC=2QC=19.6,

:.GC=BC-BG=9.6.

【点评】本题考查的是正多边形和圆、解直角三角形的应用,掌握正多边形的性质、正

弦的定义是解题的关键.

25.(6分)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对

最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的

每班各类别得分人数的条形统计图(不完整).

各类别的得分表

得分类别

0A:没有作答

1B:解答但没有正确

3C:只得到一个正确答案

6D-.得到两个正确答案,解答完全正确

已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试

题的平均得分为3.78分.请解决如下问题:

(1)九(2)班学生得分的中位数是6分;

(2)九(1)班学生中这道试题作答情况属于8类和C类的人数各是多少?

每班各类别得分人数的条形统计图

【分析】(1)由条形图可知九(2)班一共有学生48人,将48个数据按从小到大的顺序

排列,第24、25个数据都在。类,所以中位数是6分;

(2)先求出两个班一共有多少学生,减去九(2)班的学生数,得出九(1)班的学生数,

再根据条形图,用九(1)班的学生数分别减去该班A、。两类的学生数得到B类和C类

的人数和,再结合九(1)班学生这道试题的平均得分为3.78分,即可求解.

【解答】解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,

将48个数据按从小到大的顺序排列,第24、25个数据都在。类,所以中位数是6分.

故答案为6分;

(2)两个班一共有学生:(22+27)+50%=98(人),

九(1)班有学生:98-48=50(人).

设九(1)班学生中这道试题作答情况属于B类和C类的人数各是x人、y人.

由题意,得[5+X+>22=50,

10X5+x+3H6X22=3.78义5(

解得卜=6.

答:九(1)班学生中这道试题作答情况属于B类和C类的人数各是6人、17人.

【点评】本题考查的是统计图表与条形图的综合运用.读懂统计图表,从统计图表中得

到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查

了中位数与平均数.

26.(6分)【材料阅读】

地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的。。).人们在

北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古

人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这

样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉

线的夹角a的大小是变化的.

【实际应用】

观测点A在图1所示的OO上,现在利用这个工具尺在点A处测得a为31。,在点A所

在子午线往北的另一个观测点3,用同样的工具尺测得a为67°.尸0是。。的直径,

PQ±ON.

(1)求NPQB的度数;

(2)已知。尸=6400h〃,求这两个观测点之间的距离即上源的长.(n取3.1)

地平线

图1图2

【考点】MC:切线的性质;MN:弧长的计算.

【分析】(1)设点B的切线C8交ON延长线于点E,HDLBC于D,CHLBH交BC于

点C,则/。HC=67°,证出NH3£)=/Z)HC=67°,由平行线的性质得出/

HBD=61°,由直角三角形的性质得出/BOE=23°,得出NPO8=90°-23°=67°;

(2)同(1)可证/POA=31°,求出-/POA=36°,由弧长公式即

可得出结果.

【解答】解:(1)设点B的切线CB交ON延长线于点E,HDLBC于D,CH1BH交

8C于点C,如图所示:

则/。8C=67°,

VZHBD+ZBHD^ZBHD+ZDHC^90°,

:"HBD=/DHC=67°,

':ON//BH,

:.NBEO=/HBD=61°,

AZBOE=90°-67°=23°,

':PQ±ON,

:.ZPOE=9Q°,

:.ZFOB=90°-23°=67°;

(2)同(1)可证NPOA=31°,

AZAOB=ZPOB-ZPOA=67°-31°=36°,

AB=36XKX6400=3968(hn).

【点评】本题考查了切线的性质、直角三角形的性质、弧长公式等知识;熟练掌握切线

的性质和弧长公式是解题的关键.

27.(10分)如图,二次函数y=-/+4x+5图象的顶点为。,对称轴是直线1,一次函数y

=—x+1的图象与无轴交于点A,且与直线关于/的对称直线交于点8.

5

(1)点一的坐标是(2,9);

(2)直线/与直线AB交于点C,N是线段。。上一点(不与点。、C重合),点N的纵

坐标为过点N作直线与线段D4、分别交于点P、Q,使得△。尸。与相似.

①当〃=生时,求。尸的长;

5

②若对于每一个确定的〃的值,有且只有一个△QPQ与△D4B相似,请直接写出n的取

值范围2<«<21..

【分析】(1)直接用顶点坐标公式求即可;

(2)由对称轴可知点C(2,旦),A(-且0),点A关于对称轴对称的点(丝,0),

522

借助的直线解析式求得B(5,3);①当■时,N(2,空),可求

552

DN=运,CD=空当尸时,/\DPQ^/\DAB,DP=9后当PQ与A8不平行时,

55

。尸=%/^;②当尸。〃AB,尸时,DB=3炳,DN=竺,所以N(2,21),则有

55

且只有一个△。尸。与相似时,旦<“<21;

55

【解答】解:(1)顶点为。(2,9);

故答案为(2,9);

(2)对称轴x=2,

:.C(2,2),

5

由已知可求A(-—,0),

2

点A关于尤=2对称点为(至,0),

2

则AD关于x=2对称的直线为y=-2x+13,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论