山东省新泰市第二中学2025届数学高一下期末统考试题含解析_第1页
山东省新泰市第二中学2025届数学高一下期末统考试题含解析_第2页
山东省新泰市第二中学2025届数学高一下期末统考试题含解析_第3页
山东省新泰市第二中学2025届数学高一下期末统考试题含解析_第4页
山东省新泰市第二中学2025届数学高一下期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省新泰市第二中学2025届数学高一下期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若正实数满足,则的最小值为A. B. C. D.2.函数,当时函数取得最大值,则()A. B. C. D.3.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为()A. B. C. D.4.如图,,是半径为2的圆周上的定点,为圆周上的动点且,,则图中阴影区域面积的最大值为()A. B. C. D.5.已知函数向左平移个单位长度后,其图象关于轴对称,则的最小值为()A. B. C. D.6.如图所示,在边长为2的正方形中有一封闭曲线围成的阴影区域,向该正方形中随机撒一粒豆子,它落在阴影区域的概率是,则该阴影区域的面积是()A.3 B. C. D.7.一条光线从点射出,经轴反射后与圆相切,则反射光线所在直线的斜率为()A.或 B.或 C.或 D.或8.若关于的方程,当时总有4个解,则可以是()A. B. C. D.9.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.10.已知与之间的几组数据如下表则与的线性回归方程必过()A.点 B.点C.点 D.点二、填空题:本大题共6小题,每小题5分,共30分。11.辗转相除法,又名欧几里得算法,是求两个正整数之最大公约数的算法,它是已知最古老的算法之一,在中国则可以追溯至汉朝时期出现的《九章算术》.下图中的程序框图所描述的算法就是辗转相除法.若输入、的值分别为、,则执行程序后输出的的值为______.12.用列举法表示集合__________.13.已知三个顶点的坐标分别为,若⊥,则的值是______.14.cos215.已知正实数满足,则的值为_____________.16.在等比数列中,,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边为,且满足(1)求角的值;(2)若且,求的取值范围.18.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(I)求应从小学、中学、大学中分别抽取的学校数目.(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.19.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值以及对应的的值.20.为了解学生的学习情况,某学校在一次考试中随机抽取了20名学生的成绩,分成[50,60),[60,70),[70,80),[80,90),[90,100]五组,绘制了如图所示频率分布直方图.求:(Ⅰ)图中m的值;(II)估计全年级本次考试的平均分;(III)若从样本中随机抽取分数在[80,100]的学生两名,求所抽取两人至少有一人分数不低于90分的概率.21.在中,内角A,B,C所对的边分别为a,b,c;已知.(1)求角B的大小;(2)若外接圆的半径为2,求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

将变成,可得,展开后利用基本不等式求解即可.【详解】,,,,当且仅当,取等号,故选D.【点睛】本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).2、A【解析】

根据三角恒等变换的公式化简得,其中,再根据题意,得到,求得,结合诱导公式,即可求解.【详解】由题意,根据三角恒等变换的公式,可得,其中,因为当时函数取得最大值,即,即,可得,即,所以.故选:A.【点睛】本题主要考查了三角恒等变换的应用,以及诱导公式的化简求值,其中解答中熟记三角恒等变换的公式,合理利用三角函数的诱导公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】

以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,再利用向量法求出异面直线AE与BF所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),=(﹣2,1,2),=(﹣2,0,1),设异面直线AE与BF所成角的平面角为θ,则cosθ===,∴异面直线AE与BF所成角的余弦值为.故选D.【点睛】本题考查异面直线所成角的余弦值的求法,注意向量法的合理运用,属于基础题.4、D【解析】

由题意可得,要求阴影区域的面积的最大值,即为直线,运用扇形面积公式和三角形的面积公式,计算可得所求最大值.【详解】由题意可得,要求阴影区域的面积的最大值,即为直线,即有,到线段的距离为,,扇形的面积为,的面积为,,即有阴影区域的面积的最大值为.故选.【点睛】本题考查扇形面积公式和三角函数的恒等变换,考查化简运算能力,属于中档题.5、A【解析】

根据函数的图象变换规律,三角函数的图象关于轴对称,即为偶函数.,求得的最小值.【详解】把函数向左平移个单位长度后.可得的图象.再根据所得图象关于轴对称,即为偶函数.所以即,当时,的值最小.所以的最小值为:故选:A【点睛】本题主要考查函数的图象变换规律,三角函数的图象的对称性,属于基础题.6、B【解析】

利用几何概型的意义进行模拟试验,即估算不规则图形面积的大小.【详解】正方形中随机撒一粒豆子,它落在阴影区域内的概率,,又,.故选:B.【点睛】本题考查几何概型的意义进行模拟试验,计算不规则图形的面积,考查逻辑推理能力和运算求解能力,求解时注意豆子落在阴影区域内的概率与阴影部分面积及正方形面积之间的关系.7、C【解析】

由题意可知:点在反射光线上.设反射光线所在的直线方程为:,利用直线与圆的相切的性质即可得出.【详解】由题意可知:点在反射光线上.设反射光线所在的直线方程为:,即.由相切的性质可得:,化为:,解得或.故选.【点睛】本题考查了直线与圆相切的性质、点到直线的距离公式、光线反射的性质,考查了推理能力与计算能力,属于中档题.8、D【解析】

根据函数的解析式,写出与的解析式,再判断对应方程在时解的个数.【详解】对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时有2个解,当时有3个解,当时有4个解,不符合;对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时恒有4个解,符合题意.【点睛】本题考查了函数与方程的应用问题,考查数形结合思想的运用,对综合能力的要求较高.9、B【解析】

根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.10、C【解析】

根据线性回归方程必过样本中心点,即可得到结论.【详解】,,8根据线性回归方程必过样本中心点,可得与的线性回归方程必过.故选:C.【点睛】本题考查线性回归方程,解题的关键是利用线性回归方程必过样本中心点,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

程序的运行功能是求,的最大公约数,根据辗转相除法可得的值.【详解】由程序语言知:算法的功能是利用辗转相除法求、的最大公约数,当输入的,,;,,可得输出的.【点睛】本题主要考查了辗转相除法的程序框图的理解,掌握辗转相除法的操作流程是解题关键.12、【解析】

先将的表示形式求解出来,然后根据范围求出的可取值.【详解】因为,所以,又因为,所以,此时或,则可得集合:.【点睛】本题考查根据三角函数值求解给定区间中变量的值,难度较易.13、【解析】

求出,再利用,求得.【详解】,因为⊥,所以,解得:.【点睛】本题考查向量的坐标表示、数量积运算,要注意向量坐标与点坐标的区别.14、3【解析】由二倍角公式可得:cos215、【解析】

将已知等式,两边同取以为底的对数,求出,利用换底公式,即可求解.【详解】,,,.故答案为:.【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.16、【解析】

根据等比数列中,,得到公比,再写出和,从而得到.【详解】因为为等比数列,,,所以,所以,,所以.故答案为:.【点睛】本题考查等比数列通项公式中的基本量计算,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2).【解析】试题分析:(1)利用升幂公式及两角和与差的余弦公式化简已知等式,可得,从而得,注意两解;(2)由,得,利用正弦定理得,从而可变为,利用三角形的内角和把此式化为一个角的函数,再由两角和与差的正弦公式化为一个三角函数形式,由的范围()结合正弦函数性质可得取值范围.试题解析:(1)由已知,得,化简得,故或;(2)∵,∴,由正弦定理,得,故,∵,所以,,∴.18、(1)3,2,1(2)【解析】(1)从小学、中学、大学中分别抽取的学校数目为3、2、1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种.所以P(B)=315=119、(1);(2)当时,取得最小值;当时,取得最大值.【解析】

(1)利用降幂扩角公式先化简三角函数为标准型,再求解最小正周期;(2)由定义域,先求的范围,再求值域.【详解】(1)所以的最小正周期为.(2)由,得,当,即时,取得最小值,当,即时,取得最大值.【点睛】本题考查利用三角恒等变换化简三角函数解析式,之后求解三角函数的性质,本题中包括最小正周期以及函数的最值,属综合基础题.20、(I)0.045;(II)75;(III)0.7【解析】

(Ⅰ)根据频率之和为1,结合题中数据,即可求出结果;(II)每组的中间值乘以该组频率,再求和,即可得出结果;(III)用列举法列举出总的基本事件,以及满足条件的基本事件,基本事件的个数比即为所求的概率.【详解】(Ⅰ)由题意可得:(Ⅱ)各组的频率分别为0.05,0.25,0.45,0.15,0.1,所以可估计全年级的平均分为;(Ⅲ)分数落在[80,90)的人数有3人,设为a,b,c,落在[90,100的人数有2人,设为A、B,则从中随机抽取两名的结果有{ab},(ac},{a4},(aB},{bc},(bA},(bB),{cA},{cB),{AB}共10种,其中至少有一人不低于90分的有7种,故概率为0.7.【点睛】本题主要考查由频率分布直方图求参数,以及求均值的问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论