




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学年湖南省邵阳市隆回县2025届高一数学第二学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是某地某月1日至15日的日平均温度变化的折线图,根据该折线图,下列结论正确的是()A.这15天日平均温度的极差为B.连续三天日平均温度的方差最大的是7日,8日,9日三天C.由折线图能预测16日温度要低于D.由折线图能预测本月温度小于的天数少于温度大于的天数2.若满足条件C=60°,AB=,BC=的△ABC有()个A.
B. C.
D.33.已知平面内,,,且,则的最大值等于()A.13 B.15 C.19 D.214.同时抛掷三枚硬币,则抛掷一次时出现两枚正面一枚反面的概率为()A. B. C. D.5.已知数列、、、、,可猜想此数列的通项公式是().A. B.C. D.6.如图,在正方体ABCD﹣A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1②A1D1与平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1正确的结论个数是()A.1 B.2 C.3 D.47.在中,已知角的对边分别为,若,,,,且,则的最小角的余弦值为()A. B. C. D.8.圆锥的母线长为,侧面展开图为一个半圆,则该圆锥表面积为()A. B. C. D.9.在中,角的对边分别为.若,,,则边的大小为()A.3 B.2 C. D.10.在区间上随机取一个数,使得的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)12.已知等差数列的前n项和为,若,则的值为______________.13.已知数列,若对任意正整数都有,则正整数______;14.已知向量a=1,2,b=2,-2,c=15.若实数满足,则取值范围是____________。16.已知,,且,若恒成立,则实数的取值范围是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知点.(1)求中边上的高所在直线的方程;(2)求过三点的圆的方程.18.在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?(参考公式:,其中,)19.求函数的单调递增区间.20.2019年,河北等8省公布了高考改革综合方案将采取“3+1+2”模式,即语文、数学、英语必考,然后考生先在物理、历史中选择1门,再在思想政治、地理、化学、生物中选择2门.为了更好进行生涯规划,甲同学对高一一年来的七次考试成绩进行统计分析,其中物理、历史成绩的茎叶图如图所示.(1)若甲同学随机选择3门功课,求他选到物理、地理两门功课的概率;(2)试根据茎叶图分析甲同学应在物理和历史中选择哪一门学科?并说明理由;(3)甲同学发现,其物理考试成绩(分)与班级平均分(分)具有线性相关关系,统计数据如下表所示,试求当班级平均分为50分时,其物理考试成绩.参考数据:,,,.参考公式:,,(计算时精确到).21.如图,在多面体中,平面平面,四边形为正方形,四边形为梯形,且,,.(Ⅰ)求证:平面;(Ⅱ)求证:平面;(Ⅲ)在线段上是否存在点,使得平面?若存在,求出的值;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用折线图的性质,结合各选项进行判断,即可得解.【详解】由某地某月1日至15日的日平均温度变化的折线图,得:在中,这15天日平均温度的极差为:,故错误;在中,连续三天日平均温度的方差最大的是7日,8日,9日三天,故正确;在中,由折线图无法预测16日温度要是否低于,故错误;在中,由折线图无法预测本月温度小于的天数是否少于温度大于的天数,故错误.故选.【点睛】本题考查命题真假的判断,考查折线图的性质等基础知识,考查运算求解能力、数据处理能力,考查数形结合思想,是基础题.2、C【解析】
通过判断与c判断大小即可得到知道三角形个数.【详解】由于,所以△ABC有两解,故选C.【点睛】本题主要考查三角形解得个数判断,难度不大.3、A【解析】
令,,将,表示成,,即可将表示成,展开可得:,再利用基本不等式即可求得其最大值.【详解】令,,则又,所以当且仅当时,等号成立.故选:A【点睛】本题主要考查了平面向量基本定理的应用及利用基本不等式求最值,考查转化能力及计算能力,属于难题.4、B【解析】
根据二项分布的概率公式求解.【详解】每枚硬币正面向上的概率都等于,故恰好有两枚正面向上的概率为:.故选B.【点睛】本题考查二项分布.本题也可根据古典概型概率计算公式求解.5、D【解析】
利用赋值法逐项排除可得出结果.【详解】对于A选项,,不合乎题意;对于B选项,,不合乎题意;对于C选项,,不合乎题意;对于D选项,当为奇数时,,此时,当为偶数时,,此时,合乎题意.故选:D.【点睛】本题考查利用观察法求数列的通项,考查推理能力,属于中等题.6、B【解析】
在①中,由,得到平面;在②中,由,得到平面;在③中,由,得到与平面相交但不垂直;在④中,由平面,得到平面平面,即可求解.【详解】由正方体中,可得:在①中,因为,平面,平面,∴平面,故①正确;在②中,∵,平面,平面,∴平面,故②错误;在③中,∵,∴与平面相交但不垂直,故③错误;在④中,∵平面,平面,∴平面平面,故④正确.故选:B.【点睛】本题主要考查了命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7、D【解析】
利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出.【详解】,由正弦定理,即,,,,解得,由大边对大角定理可知角是最小角,所以,,故选D.【点睛】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.8、B【解析】
由圆锥展开图为半径为的半圆,得出其弧长等于圆锥的底面圆周长,可得出圆锥底面圆的半径,然后利用圆锥的表面积公式可计算出圆锥的表面积.【详解】一个圆锥的母线长为,它的侧面展开图为半圆,半圆的弧长为,即圆锥的底面周长为,设圆锥的底面半径是,则得到,解得,这个圆锥的底面半径是,圆锥的表面积为.故选:B.【点睛】本题考查圆锥表面积的计算,计算时要结合已知条件列等式计算出圆锥的相关几何量,考查运算求解能力,属于中等题.9、A【解析】
直接利用余弦定理可得所求.【详解】因为,所以,解得或(舍).故选A.【点睛】本题主要考查了余弦定理在解三角形中的应用,考查了一元二次方程的解法,属于基础题.10、A【解析】则,故概率为.二、填空题:本大题共6小题,每小题5分,共30分。11、12.2【解析】
先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.12、1【解析】
由等差数列的性质可得a7+a9+a11=3a9,而S17=17a9,故本题可解.【详解】∵a1+a17=2a9,∴S1717a9=170,∴a9=10,∴a7+a9+a11=3a9=1;故答案为:1.【点睛】本题考查了等差数列的前n项和公式与等差数列性质的综合应用,属于基础题.13、9【解析】
分析数列的单调性,以及数列各项的取值正负,得到数列中的最大项,由此即可求解出的值.【详解】因为,所以时,,时,,又因为在上递增,在也是递增的,所以,又因为对任意正整数都有,所以.故答案为:.【点睛】本题考查数列的单调性以及数列中项的正负判断,难度一般.处理数列单调性或者最值的问题时,可以采取函数的思想来解决问题,但是要注意到数列对应的函数的定义域为.14、1【解析】
由两向量共线的坐标关系计算即可.【详解】由题可得2∵c//∴4λ-2=0故答案为1【点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.15、;【解析】
利用三角换元,设,;利用辅助角公式将化为,根据三角函数值域求得结果.【详解】可设,,本题正确结果:【点睛】本题考查利用三角换元法求解取值范围的问题,关键是能够将问题转化为三角函数值域的求解问题.16、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)边上的高所在直线方程斜率与边所在直线的方程斜率之积为-1,可求出高所在直线的斜率,代入即可求出高所在直线的方程。(2)设圆的一般方程为,代入即可求得圆的方程。【详解】(1)因为所在直线的斜率为,所以边上的高所在直线的斜率为所以边上的高所在直线的方程为,即(2)设所求圆的方程为因为在所求的圆上,故有所以所求圆的方程为【点睛】(1)求直线方程一般通过直线点斜式方程求解,即知道点和斜率。(2)圆的一般方程为,三个未知数三个点代入即可。18、(1);(2)该公司应开设4个分店时,在该区的每个分店的平均利润最大【解析】
(1)由表中数据先求得.再结合公式分别求得,即可得y关于x的线性回归方程.(2)将(1)中所得结果代入中,进而表示出每个分店的平均利润,结合基本不等式即可求得最值及取最值时自变量的值.【详解】(1)由表中数据和参考数据得:,,因而可得,,再代入公式计算可知,∴,∴.(2)由题意,可知总收入的预报值与x之间的关系为:,设该区每个分店的平均利润为t,则,故t的预报值与x之间的关系为,当且仅当时取等号,即或(舍)则当时,取到最大值,故该公司应开设4个分店时,在该区的每个分店的平均利润最大.【点睛】本题考查了线性回归方程的求法,基本不等式求函数的最值及等号成立的条件,属于基础题.19、()【解析】
先化简函数得到,再利用复合函数单调性原则结合整体法求单调区间即可.【详解】,令,则,因为是的一次函数,且在定义域上单调递增,所以要求的单调递增区间,即求的单调递减区间,即(),∴(),即(),∴函数的单调递增区间为().【点睛】本题考查求复合型三角函数的单调区间,答题时注意,复合函数的单调性遵循“同增异减”法则.20、(1);(2)见解析;(3)见解析【解析】
(1)列出基本事件的所有情况,然后再列出满足条件的所有情况,利用古典概率公式即可得到答案.(2)计算平均值和方差,从而比较甲同学应在物理和历史中选择哪一门学科;(3)先计算和,然后通过公式计算出线性回归方程,然后代入平均值50即可得到答案.【详解】(1)记物理、历史分别为,思想政治、地理、化学、生物分别为,由题意可知考生选择的情形有,,,,,,,,,,,,共12种他选到物理、地理两门功课的满情形有,共3种甲同学选到物理、地理两门功课的概率为(2)物理成绩的平均分为历史成绩的平均分为由茎叶图可知物理成绩的方差历史成绩的方差故从平均分来看,选择物理历史学科均可以;从方差的稳定性来看,应选择物理学科;从最高分的情况来看,应选择历史学科(答对一点即可)(3),,关于的回归方程为当时,,当班级平均分为50分时,其物理考试成绩为73分【点睛】本题主要考查古典概型,统计数的相关含义,线性回归方程的计算,意在考查学生的阅读理解能力,计算能力和分析能力,难度不大.21、(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 7247.3-2025激光产品的安全第3部分:激光显示与表演指南
- 一建机电纸板课件
- 中医护理骨干总结汇报
- 车棚防水施工方案
- 急救物品管理规范
- 携手AI共育未来人工智能科普教育主题活动课件
- 大学高等数学知识点总结
- 妇幼信息培训课件
- 2025导游证《政策与法律法规》考前冲刺必会300题-含答案
- 安徽省滁州市2025届高考化学三模试卷含解析
- 2025年深入学习贯彻“中央八项规定”精神知识竞赛测试题库及答案
- 义乌市事业单位招聘考试真题2024
- 企业廉洁风险防控课件教学
- T-SDFA 047-2024 混合型饲料添加剂中卡那霉素的测定 液相色谱-串联质谱法
- 中医护理三基练习题库+答案
- 2025年护士三基考核试题及答案
- 七年级下册2025春季历史 教学设计《明朝对外关系》 学习资料
- 《设备管理标准化实施手册》
- 2025年上海市各区中考语文一模卷【说明文阅读题】汇集练附答案解析
- 湖南省长沙市明达中学2024-2025学年九年级下学期入学考试英语试卷(含答案无听力原文及音频)
- 汽车站建设项目可行性研究报告
评论
0/150
提交评论