版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南安市南安一中2025届高一数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正实数满足,则的最小值()A.2 B.3 C.4 D.2.在中,“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件3.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,4.函数则=()A. B. C.2 D.05.如图所示,在四边形中,,,.将四边形沿对角线折成四面体,使平面平面,则下列结论中正确的结论个数是()①;②;③与平面所成的角为;④四面体的体积为.A.个 B.个 C.个 D.个6.设是虚数单位,复数为纯虚数,则实数的值为()A. B. C. D.7.设为锐角三角形,则直线与两坐标轴围成的三角形的面积的最小值是()A.10 B.8 C.4 D.28.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.9.定义运算:.若不等式的解集是空集,则实数的取值范围是()A. B.C. D.10.已知向量,满足,和的夹角为,则()A. B. C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.等比数列中,,则公比____________.12.已知三棱锥(如图所示),平面,,,,则此三棱锥的外接球的表面积为______.13.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是14.若各项均为正数的等比数列,,则它的前项和为______.15.甲、乙两人要到某地参加活动,他们都随机从火车、汽车、飞机三种交通工具中选择一种,则他们选择相同交通工具的概率为_________.16.在中,内角的对边分别为,若的周长为,面积为,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,.(1)求关于的表达式,并求的最小正周期;(2)若当时,的最小值为,求的值.18.已知数列的前n项和为,且.(1)求数列的通项公式;(2)若,设数列的前n项和为,证明.19.如图,是的直径,所在的平面,是圆上一点,,.(1)求证:平面平面;(2)求直线与平面所成角的正切值.20.在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.21.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
,当且仅当,即,时的最小值为3.故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.2、A【解析】
余弦函数在上单调递减【详解】因为A,B是的内角,所以,在上余弦函数单调递减,在中,“”“”【点睛】充要条件的判断,是高考常考知识点,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。3、D【解析】
首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.4、B【解析】
先求得的值,进而求得的值.【详解】依题意,,故选B.【点睛】本小题主要考查分段函数求值,考查运算求解能力,属于基础题.5、B【解析】
根据题意,依次分析命题:对于①,可利用反证法说明真假;对于②,为等腰直角三角形,平面,得平面,根据勾股定理逆定理可知;对于③,由与平面所成的角为知真假;对于④,利用等体积法求出所求体积进行判定即可,综合可得答案.【详解】在四边形中,,,则,可得,由,若,且,可得平面,平面,,这与矛盾,故①不正确;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正确;由②知平面,则直线与平面所成的角为,且有,,则为等腰直角三角形,且,则.故③不正确;四面体的体积为,故④不正确.故选:B.【点睛】本题主要考查了直线与平面所成的角,以及三棱锥的体积的计算,考查了空间想象能力,推理论证能力,解题的关键是须对每一个进行逐一判定.6、A【解析】,,,故选A.7、B【解析】
令,得直线在x、y轴上的截距,求得三角形面积并利用二倍角公式化简,根据三角函数图象和性质求得面积最小值即可.【详解】令得直线在y轴上的截距为,令得直线在x轴上的截距为,其围成的三角形面积:,求S的最小值转化为求函数的最小值,因为为锐角,所以,当时取最小值−1,则,故围成三角形面积最小值为8.故选:B.【点睛】本题考查直线方程与三角函数二倍角公式的应用,综合题性较强,属于中等题.8、A【解析】
根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【详解】根据图像可知,所以,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.9、B【解析】
根据定义可得的解集是空集,即恒成立,再对分类讨论可得结果.【详解】由题意得的解集是空集,即恒成立.当时,不等式即为,不等式恒成立;当时,若不等式恒成立,则即解得.综上可知:.故选:B【点睛】本题考查了二次不等式的恒成立问题,考查了分类讨论思想,属于基础题.10、B【解析】
由平面向量的数量积公式,即可得到本题答案.【详解】由题意可得.故选:B.【点睛】本题主要考查平面向量的数量积公式,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据题意得到:,解方程即可.【详解】由题知:,解得:.故答案为:【点睛】本题主要考查等比数列的性质,熟练掌握等比数列的性质为解题的关键,属于简单题.12、【解析】
由于图形特殊,可将图形补成长方体,从而求长方体的外接球表面积即为所求.【详解】,,,,平面,将三棱锥补形为如图的长方体,则长方体的对角线,则【点睛】本题主要考查外接球的相关计算,将图形补成长方体是解决本题的关键,意在考查学生的划归能力及空间想象能力.13、【解析】
利用长方体的体对角线是长方体外接球的直径,求出球的半径,从而可得结果.【详解】本题主要考查空间几何体的表面积与体积.长方体的体对角线是长方体外接球的直径,设球的半径为,则,可得,球的表面积故答案为.【点睛】本题主要考查长方体与球的几何性质,以及球的表面积公式,属于基础题.14、【解析】
利用等比数列的通项公式求出公比,由此能求出它的前项和.【详解】设各项均为正数的等比数列的公比为,由,得,且,解得,它的前项和为.故答案:.【点睛】本题考查等比数列的前项和的求法,考查等比数列的性质等基础知识,考查运算求解能力,属于基础题.15、【解析】
利用古典概型的概率求解.【详解】甲、乙两人选择交通工具总的选择有种,他们选择相同交通工具有3种情况,所以他们选择相同交通工具的概率为.故答案为:.【点睛】本题考查古典概型,要用计数原理进行计数,属于基础题.16、3【解析】
分析:由题可知,中已知,面积公式选用,得,又利用余弦定理,即可求出的值.详解:,,由余弦定理,得又,,解得.故答案为3.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向;第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化;第三步:求结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据向量数量积的坐标运算及辅助角公式得:,并求出最小正周期为;(2)由,得到,从而,再根据的最小值为,求得.【详解】(1),所以.(2)当时,则,所以,所以,解得:.【点睛】本题考查向量与三角函数的交会,求函数的最值时,要注意整体思想的运用,即先求出,再得到.18、(1);(2)见解析.【解析】【试题分析】(1)借助题设中的数列递推式探求数列通项之间的关系,再运用等比数列的定义求得通项公式;(2)依据(1)的结论运用错位相减法求解,再借助简单缩放法推证:(1)当时,得,当时,得,所以,(2)由(1)得:,又①得②两式相减得:,故,所以.点睛:解答本题的思路是充分借助题设条件,先探求数列的的通项公式,再运用错位相减法求解前项和.解答第一问时,先借助题设中的数列递推式探求数列通项之间的关系,再运用等比数列的定义求得通项公式;解答第二问时,先依据(1)中的结论求得,运用错位相减求和法求得,使得问题获解.19、(1)证明见解析;(2)2.【解析】
(1)首先证明平面,利用线面垂直推出平面平面;(2)找到直线与平面所成角所在三角形,利用三角形边角关系求解即可.【详解】(1)∵是直径,∴,即,又∵所在的平面,在所在的平面内,∴,∴平面,又平面,∴平面平面;(2)∵平面,∴直线与平面所成角即,设,∵,∴,∴,∴.【点睛】本题主要考查了面面垂直的证明,直线与平面所成角的求解,属于一般题.20、(1);(2),.【解析】试题分析:(1)根据题意和正弦定理求出a的值;
(2)由二倍角的余弦公式变形求出,由的范围和平方关系求出,由余弦定理列出方程求出的值,代入三角形的面积公式求出的面积.试题解析:(1)因为,,由正弦定理,得.(2)因为,且,所以,.由余弦定理,得,解得或(舍),所以.21、(1)取出球为红球或黑球的概率为(2)取出球为红球或黑球或白球的概率为【解析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 怀化学院《博物馆学》2021-2022学年第一学期期末试卷
- 钢结构工程承包商责任合同
- 神奇的面粉主题课程设计
- 美容院会员权益提升方案
- 填方路基施工质量控制方案
- PF-04701475-生命科学试剂-MCE
- PEG-NHS-ester-disulfide-N-Hydroxy-succinimidy-propionate-octa-ethylene-glycol-disulfid-生命科学试剂-MCE
- PD-118440-生命科学试剂-MCE
- 健身房柔韧提升课程设计
- 2024补偿贸易返销合同范本
- 水利工程分部工程单位工程质量结论核备报审表优质资料
- 立冬传统节气介绍PPT模板
- 铝两片罐工艺流程
- 《了凡四训》原文及译文-拼音版
- 学校运动场建设项目施工组织设计方案
- 法医病理学 教学大纲
- GB/T 450-2008纸和纸板试样的采取及试样纵横向、正反面的测定
- GB/T 15530.6-2008铜管折边和铜合金对焊环松套钢法兰
- 2018年武术套路社会体育指导员题库与标准答案
- 第二章 环境数据统计与分析课件
- 八三式铁路军用桥墩简明手册
评论
0/150
提交评论