山西省浑源县第七中学校2025届数学高一下期末综合测试模拟试题含解析_第1页
山西省浑源县第七中学校2025届数学高一下期末综合测试模拟试题含解析_第2页
山西省浑源县第七中学校2025届数学高一下期末综合测试模拟试题含解析_第3页
山西省浑源县第七中学校2025届数学高一下期末综合测试模拟试题含解析_第4页
山西省浑源县第七中学校2025届数学高一下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省浑源县第七中学校2025届数学高一下期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的终边经过点,则=()A. B. C. D.2.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有().A. B. C. D.3.如图,在矩形中,,,点满足,记,,,则的大小关系为()A. B.C. D.4.在三棱锥中,,,则三棱锥外接球的体积是()A. B. C. D.5.已知圆,直线.设圆O上到直线l的距离等于2的点的个数为k,则()A.1 B.2 C.3 D.46.已知平面向量满足:,,,若,则的值为()A. B. C.1 D.-17.已知网格纸的各个小格均是边长为一个单位的正方形,一个几何体的三视图如图中粗线所示,则该几何体的表面积为()A. B. C. D.8.若、为异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交9.在等差数列中,,则的值()A. B. C. D.10.已知实数x,y满足约束条件y≤1x≤2x+2y-2≥0,则A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.如图所示,在正三棱柱中,是的中点,,则异面直线与所成的角为____.12.将无限循环小数化为分数,则所得最简分数为______;13.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.14.方程的解集是______.15.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.16.已知函数的图象关于点对称,记在区间的最大值为,且在()上单调递增,则实数的最小值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列中,,.(1)求数列的通项公式:(2)设,求数列的通项公式及其前项和.18.已知数列的前项和为,,.(1)求数列的通项公式;(2)在数列中,,其前项和为,求的取值范围.19.已知函数的最小正周期为,(1)求函数的单调递减区间;(2)若函数在区间上有两个零点,求实数的取值范围.20.如图,四棱锥中,底面为平行四边形,,,底面.(1)证明:;(2)设,求点到面的距离.21.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.(1)求证:AD⊥平面BFED;(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为θ,试求θ的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.2、B【解析】

根据所给数据,分别求出平均数为a,中位数为b,众数为c,然后进行比较可得选项.【详解】,中位数为,众数为.故选:B.【点睛】本题主要考查统计量的求解,明确平均数、中位数、众数的求解方法是求解的关键,侧重考查数学运算的核心素养.3、C【解析】

可建立合适坐标系,表示出a,b,c的大小,运用作差法比较大小.【详解】以为圆心,以所在直线为轴、轴建立坐标系,则,,,设,则,,,,,,,,故选C.【点睛】本题主要考查学生的建模能力,意在考查学生的理解能力及分析能力,难度中等.4、B【解析】

三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心,外接球的半径为,可求出,然后由可求出半径,进而求出外接球的体积.【详解】由题意,易知三棱锥是正三棱锥,取为外接圆的圆心,连结,则平面,设为三棱锥外接球的球心.因为,所以.因为,所以.设三棱锥外接球的半径为,则,解得,故三棱锥外接球的体积是.故选B.【点睛】本题考查了三棱锥的外接球体积的求法,考查了学生的空间想象能力与计算求解能力,属于中档题.5、B【解析】

找出圆O的圆心坐标与半径r,利用点到直线的距离公式求出圆心O到直线l的距离d,根据d与r的大小关系及r-d的值,即可作出判断.【详解】由圆的方程得到圆心O(0,0),半径,∵圆心O到直线l的距离,且r−d=−1<2,∴圆O上到直线l的距离等于2的点的个数为2,即k=2.故选:B.【点睛】本题考查直线与圆的位置关系,利用圆心到直线的距离公式求出圆心O到直线l的距离d,根据d与r的大小关系可判断直线与圆的位置,考查计算和几何应用能力,属于基础题.6、C【解析】

将代入,化简得到答案.【详解】故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.7、B【解析】

根据三视图还原几何体即可.【详解】由三视图可知,该几何体为一个圆柱内切了一个圆锥,圆锥侧面积为,圆柱上底面积为,圆柱侧面积为,.所以选择B【点睛】本题主要考查了三视图,根据三视图还原几何体常用的方法有:在正方体或者长方体中切割.属于中等题.8、D【解析】解:因为为异面直线,直线,则与的位置关系是异面或相交,选D9、B【解析】

根据等差数列的性质,求得,再由,即可求解.【详解】根据等差数列的性质,可得,即,则,故选B.【点睛】本题主要考查了等差数列的性质,以及特殊角的三角函数值的计算,着重考查了推理与运算能力,属于基础题.10、C【解析】

作出可行域,作直线l:x+y=0,平移直线l可得最优解.【详解】作出可行域,如图ΔABC内部(含边界),作直线l:x+y=0,平移直线l,当直线l过点C(2,1)时,x+y=2+1=3为最大值.故选C.【点睛】本题考查简单的线性规划,解题关键是作出可行域.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

要求两条异面直线所成的角,需要通过见中点找中点的方法,找出边的中点,连接出中位线,得到平行,从而得到两条异面直线所成的角,得到角以后,再在三角形中求出角.【详解】取的中点E,连AE,,易证,∴为异面直线与所成角,设等边三角形边长为,易算得∴在∴故答案为【点睛】本题考查异面直线所成的角,本题是一个典型的异面直线所成的角的问题,解答时也是应用典型的见中点找中点的方法,注意求角的三个环节,一画,二证,三求.12、【解析】

将设为,考虑即为,两式相减构造方程即可求解出的值,即可得到对应的最简分数.【详解】设,则,由可知,解得.故答案为:.【点睛】本题考查将无限循环小数化为最简分数,主要采用方程的思想去计算,难度较易.13、【解析】

设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.14、或【解析】

根据三角函数的性质求解即可【详解】,如图所示:则故答案为:或【点睛】本题考查由三角函数值求解对应自变量取值范围,结合图形求解能够避免错解,属于基础题15、【解析】

列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【详解】所有的基本事件有:、、、、、、、、、,共个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:、、,共个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为,故答案为.【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.16、【解析】,所以,又,得,所以,且求得,又,得单调递增区间为,由题意,当时,。点睛:本题考查三角函数的化简及性质应用。本题首先考查三角函数的辅助角公式应用,并结合对称中心的性质,得到函数解析式。然后考察三角函数的单调性,利用整体思想求出单调区间,求得答案。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2),【解析】

(1)利用累加法得到答案.(2)计算,利用裂项求和得到前项和.【详解】(1)由题意可知左右累加得.(2).【点睛】本题考查了数列的累加法,裂项求和法,是数列的常考题型.18、(1).(2)【解析】

(1)根据已知的等式,再写一个关于等式,利用求通项公式;(2)利用裂项相消法求解,再根据单调性以及求解的取值范围.【详解】解:(1)当时,,,两式相减得整理得,即,又,,,则,当时,,所以.(2),则,.又,所以数列单调递增,当时,最小值为,又因为,所以的取值范围为.【点睛】当,且是等差数列且,则的前项和可用裂项相消法求解:.19、(1)的单调递减区间为(2)【解析】

(1)由二倍角公式和两角和的正弦公式化函数为一个角的一个三角函数形式,然后得正弦函数的单调性求得减区间;(2)函数在区间上有两个零点可转化为函数与的图像有两个不同的交点.,利用函数图象可求解.【详解】(1)函数的最小正周期,故令,得故的单调递减区间为(2)函数在区间上有两个零点,即方程区间上有两个不同的实根,即函数与的图像有两个不同的交点.,故,结合单调性可知,要使函数与图像有两个不同的交点,则,所以【点睛】本题考查三角函数的图象与性质,考查二倍角公式和两角和的正弦公式,考查零点个数问题.解决函数零点个数问题通常需要转化与化归,即转化为函数图象交点个数问题,大多数情况是函数图象与直线交点个数问题.象本题,最后转化为求函数的单调性与极值(最值).20、(1)见解析(2)【解析】试题分析:(Ⅰ)要证明线线垂直,一般用到线面垂直的性质定理,即先要证线面垂直,首先由已知底面.知,因此要证平面,从而只要证,这在中可证;(Ⅱ)要求点到平面的距离,可过点作平面的垂线,由(Ⅰ)的证明,可得平面,从而有平面,因此平面平面,因此只要过作于,则就是的要作的垂线,线段的长就是所要求的距离.试题解析:(Ⅰ)证明:因为,,由余弦定理得.从而,∴,又由底面,面,可得.所以平面.故.(Ⅱ)解:作,垂足为.已知底面,则,由(Ⅰ)知,又,所以.故平面,.则平面.由题设知,,则,,根据,得,即点到面的距离为.考点:线面垂直的判定与性质.点到平面的距离.21、(1)证明见解析(2)θ最小值为60°【解析】

(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再结合面面垂直的判定,证得DE⊥平面ABCD,即可证得AD⊥平面BFED;(2)以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,求得平面PAB与平面ADE法向量,利用向量的夹角公式,即可求解。【详解】(1)证明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE⊂平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直线AD,BD,ED两两垂直,故以D为原点,直线DA,DB,DE分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,令EP=λ(0≤λ≤),则D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论