版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省泰安市宁阳第一中学高一下数学期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A. B. C. D.2.已知变量满足约束条件,则的最大值为()A.8 B.7 C.6 D.43.在中,角所对的边分别为,已知下列条件,只有一个解的是()A.,, B.,,C.,, D.,,4.在数列中,,且数列是等比数列,其公比,则数列的最大项等于()A. B. C.或 D.5.已知集合,,则()A. B.C. D.6.直线在轴上的截距为()A.2 B.﹣3 C.﹣2 D.37.在平行四边形中,,,则点的坐标为()A. B. C. D.8.若函数则()A. B. C. D.9.《九章算术》中有这样一个问题:今有竹九节,欲均减容之(其意为:使容量均匀递减),上三节容四升,下三节容二升,中三节容几何?()A.二升 B.三升 C.四升 D.五升10.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件,则的对立事件是()A.至多有一件次品 B.两件全是正品 C.两件全是次品 D.至多有一件正品二、填空题:本大题共6小题,每小题5分,共30分。11.已知x,y=R+,且满足x2y6,若xy的最大值与最小值分别为M和m,M+m=_____.12.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为.13.中,若,,则角C的取值范围是________.14.在数列{}中,,则____.15.设函数,则使得成立的的取值范围是_______________.16.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设向量、满足,,.(1)求的值;(2)若,求实数的值.18.已知.(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.19.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.20.如图是某地某公司名员工的月收入后的直方图.根据直方图估计:(1)该公司月收入在元到元之间的人数;(2)该公司员工的月平均收入.21.已知等差数列的前n项和为,关于x的不等式的解集为.(1)求数列的通项公式;(2)若数列满足,求数列的前n项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用古典概型概率公式求解即可.【详解】设三件正品分别记为,一件次品记为则从三件正品、一件次品中随机取出两件,取出的产品可能为,共6种情况,其中取出的产品全是正品的有3种所以产品全是正品的概率故选:B【点睛】本题主要考查了利用古典概型概率公式计算概率,属于基础题.2、B【解析】
先画出满足约束条件的平面区域,然后求出目标函数取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.【详解】满足约束条件的平面区域如下图所示:作直线把直线向上平移可得过点时最小当,时,取最大值1,故答案为1.【点睛】本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.3、D【解析】
首先根据正弦定理得到,比较与的大小关系即可判定A,B错误,再根据大边对大角即可判定C错误,根据勾股定理即可判定D正确.【详解】对于A,因为,,所以,有两个解,故A错误.对于B,因为,,所以,无解,故B错误.对于C,因为,所以,即,,所以无解,故C错误.对于D,,为直角三角形,故D正确.故选:D【点睛】本题主要考查三角形个数的判断,利用正弦定理判断为解题的关键,属于简单题.4、C【解析】
在数列中,,,且数列是等比数列,其公比,利用等比数列的通项公式可得:.可得,利用二次函数的单调性即可得出.【详解】在数列中,,,且数列是等比数列,其公比,.,.由或8时,,或9时,,数列的最大项等于或.故选:C.【点睛】本题考查等比数列的通项公式、累乘法、二次函数的单调性,考查推理能力与计算能力,属于中档题.5、A【解析】
先化简集合,根据交集与并集的概念,即可得出结果。【详解】因为,,所以,.故选A【点睛】本题主要考查集合的基本运算,熟记概念即可,属于基础题型.6、B【解析】
令,求出值则是截距。【详解】直线方程化为斜截式为:,时,,所以,在轴上的截距为-3。【点睛】轴上的截距:即令,求出值;同理轴上的截距:即令,求出值7、A【解析】
先求,再求,即可求D坐标【详解】,∴,则D(6,1)故选A【点睛】本题考查向量的坐标运算,熟记运算法则,准确计算是关键,是基础题8、B【解析】
首先根据题意得到,再计算即可.【详解】……,.故选:B【点睛】本题主要考查分段函数值的求法,同时考查了指数幂的运算,属于简单题.9、B【解析】
由题意可得,上、中、下三节的容量成等差数列.再利用等差数列的性质,求出中三节容量,即可得到答案.【详解】由题意,上、中、下三节的容量成等差数列,上三节容四升,下三节容二升,则中三节容量为,故选B.【点睛】本题主要考查了等差数列的性质的应用,其中解答中熟记等差数列的等差中项公式是解答的关键,着重考查了运算与求解能力,属于基础题.10、B【解析】
根据对立事件的概念,选出正确选项.【详解】从四件正品、两件次品中随机取出两件,“至少有一件次品”的对立事件为两件全是正品.故选:B【点睛】本小题主要考查对立事件的理解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设,则,可得,然后利用基本不等式得到关于的一元二次方程解方程可得的最大值和最小值,进而得到结论.【详解】∵x,y=R+,设,则,∴∴12t=(2t+2)x+(4t+1)y,∴18t≥(t+1)(4t+1)=4t2+5t+1,∴4t2﹣13t+1≤0,∴,∵xy的最大值与最小值分别为M和m,∴M,m,∴M+m.【点睛】本题考查了基本不等式的应用和一元二次不等式的解法,考查了转化思想和运算推理能力,属于中档题.12、【解析】
由题意可得:该三棱锥的三条侧棱两两垂直,长都为,所以三棱锥的体积.考点:三棱锥的体积公式.13、;【解析】
由,利用正弦定理边角互化以及两角和的正弦公式可得,进而可得结果.【详解】由正弦定理可得,又,则,即,则,C是三角形的内角,则,故答案为:.【点睛】本题注意考查正弦定理以及两角和的正弦公式的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.14、1【解析】
直接利用等比数列的通项公式得答案.【详解】解:在等比数列中,由,公比,得.故答案为:1.【点睛】本题考查等比数列的通项公式,是基础题.15、【解析】
根据函数的表达式判断出函数为偶函数,判断函数在的单调性为递增,根据偶函数的对称性可得,解绝对值不等式即可.【详解】解:,定义域为,因为,所以函数为偶函数.当时,易知函数在为增函数,根据偶函数的性质可知:由可知,所以,解得:或.故答案为:.【点睛】本题考查偶函数的性质和利用偶函数对称性的特点解决问题,属于基础题.16、12.2【解析】
先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)将等式两边平方,利用平面向量数量积的运算律可计算出的值;(2)由转化为,然后利用平面向量数量积的运算律可求出实数的值.【详解】(1)在等式两边平方得,即,即,解得;(2),,即,解得.【点睛】本题考查利用平面向量的模求数量积,同时也考查了利用平面向量数量积来处理平面向量垂直的问题,考查化归与转化数学思想,属于基础题.18、(1);(2)或.【解析】
(1),再解一元二次不等式即可;(2)由题意得,,代入即可求出实数,的值.【详解】(1)∵,∴,∴,解得,∴原不等式的解集为;(2)由题意得,,即,解得或,∴或.【点睛】本题主要考查一元二次不等式的解法,考查三个二次之间的关系,考查转化与化归思想,属于基础题.19、(1)圆:.(2)证明见解析;,.【解析】
(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的切线的几何性质,得到过,,三点的圆是以为直径的圆.设出圆上任意一点的坐标,利用,结合向量数量积的坐标运算进行化简,得到该圆对应的方程,根据方程过的定点与无关列方程组,解方程组求得该圆所过定点.【详解】解:(1)设圆心,则圆心到直线的距离.因为圆被直线截得的弦长为∴.解得或(舍),∴圆:.(2)已知,设,∵为切线,∴,∴过,,三点的圆是以为直径的圆.设圆上任一点为,则.∵,,∴即.若过定点,即定点与无关令解得或,所以定点为,.【点睛】本小题主要考查圆的几何性质,考查圆的弦长有关计算,考查曲线过定点问题的求解策略,考查向量数量积的坐标运算,属于中档题.20、(1);(2).【解析】
(1)根据频率分布直方图得出该公司月收入在元到元的员工所占的频率,再乘以可得出所求结果;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得的积全部相加可得出该公司员工月收入的平均数.【详解】(1)根据频率分布直方图知,该公司月收入在元到元的员工所占的频率为:,因此,该公司月收入在元到元之间的人数为;(2)据题意该公司员工的平均收入为:(元).【点睛】本题考查频率分布直方图的应用,考查频数的计算以及平均数的计算,解题时要注意频数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 紫外-可见吸收光谱法(UV-Vis)
- 大学生入职职业规划
- 大班活动教案保护大自然
- 医疗单位安全培训
- 儿童骨折的护理查房
- 三位数乘两位数能力测试模拟题大全附答案
- 《吉林大学采购管理》课件
- 大气压强实践活动
- 《入侵检测技术培训》课件
- 微课人力资源部门所承担的主要职责及发展趋势财经管理人力
- 外科手术中肝脏切除技术讲解
- 机动车驾驶培训汽车安全驾驶课件
- 《人员烫伤应急预案》课件
- 驾校年度安全生产目标方案
- 2024年插花花艺师理论知识考试题库(含答案)
- 软硬件集成方案
- 自身免疫性脑炎护理
- 2024年基因编辑技术的伦理问题
- 材料力学课程导学与考研指导
- 腮腺及面神经解剖
- 统编本道德与法治小学四年级上册第五、第六单元集体备课(各一套)
评论
0/150
提交评论