版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(决胜中考)2024年山东省中考数学常考题模拟卷(一)
学校:___________姓名:___________班级:___________考号:
题号一二三总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、单选题
1.下列式子中,为最简二次根式的是()
A.B.y/2C.y/4D.712
2.遵义市2019年6月1日的最高气温是25℃,最低气温是15℃,遵义市这一天的最高气温比最低气温高()
A.25℃B.15℃C.10℃D.-10℃
3.下列长度的三条线段,能组成三角形的是()
A.2,2,4B.5,6,12C.5,7,2D.6,8,10
4.下列运算正确的是()
A.x2»x3=x6B.(x2)3=x®C.x2+x3=x5D.x2+x2=2x4
5.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果N1=32°,那么N2的度数是()
A.32°B.58°
C.68°D.60°
]7
6.将分式方程上=三去分母后得到的整式方程,正确的是()
尤x-2
A.x-2=2xB.x2-2x=2xC.x-2=xD.x=2x-4
7.在四边形ABC。中,AD//BC,ZABC=90°,AB=BC,点E为A3边上一点,ZBCE^15°,5.AE=AD.连
接DE交对角线AC于H,连接下列结论中:①ACLDE;②_||二;③CD=2DH;④》=黑;
HE2、BECAC
⑤SME=2SSCE.其中正确的个数是()
1
D
H
BC
A.2B.3C.4D.5
8.甲车与乙车同时从A地出发去往B地,如图所示,折线。-A-8-C和射线OC分别是甲、乙两车行进过程
中路程与时间的关系,已知甲车中途有事停留36分钟后再继续前往8地,两车同时到达3地,则下列说法:
①乙车的速度为70千米/时;②甲车再次出发后的速度为100千米/时;③两车在到达B地前不会相遇;④
甲车再次出发时,两车相距60千米.其中正确的有()
9.在平行四边形ABCD中,AB=3,BC=4,当平行四边形ABCD的面积最大时,下结论正确的有()
①AC=5A+ZC=180°③AC_LBD④AC=BD
A.①②④B.①②③C.②③④D.①③④
10.如图,有两张矩形纸片ABC。和EFG”,AB=£F=2cm,BC=FG=8cm.把纸片ABC。交叉叠放在纸片
EFG8上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角a最小时,sin«等于()
11.如图,是。。的直径,弦CO_LAB,DEWCB.若AB=10,CD=6,则。E的长为()
2
A迎B.攻C.6D—
555
12.如图,在正方形ABC。中,BC=2,点、P,。均为A8边上的动点,BE±CP,垂足为E,则QD+0E的最
小值为()
AD
Q
P
BC
A.2B.3C.V10-1D.屈-1
二、填空题
13.如图,正方形二维码的边长为2c",为了测算图中黑色部分的面积,在正方形区域内随机掷点,经过大量
重复试验,发现点落入黑色部分的频率稳定在0.7左右,据此可估计黑色部分的面积约为_c/.
14.如图,电线杆的顶上有一盏高为6m的路灯,电线杆底部为A,身高1.5m的男孩站在与点A相距6m的
点8处.若男孩以6m为半径绕电线杆走一圈,则他在路灯下的影子BC扫过的面积为_m2.
3
15.如图,点B是反比例函数y=A(x>0)图象上一点,过点B作X轴的平行线,交y轴于点A,点C是X
X
轴上一点,AABC的面积是2,则%=.
16.如图,直线>=x+l与抛物线y=/-4x+5交于A,8两点,点尸是》轴上的一个动点,当AR4B的周长最
。上的动点,点。是BC的中点,AO延长线交(。于点E,则班的
三、解答题
18.(-1)2020+(^-+1)°-4cos300+V9
4
19.如图,把平行四边形纸片ABCD沿折叠,点C落在点C'处,与AD相交于点E.
求证:EB=ED
4k
20.如图,在平面直角坐标系中A点的坐标为(8,y),ABLx轴于点B,sinNOAB=-,反比例函数y=二的
5x
图象的一支经过AO的中点C,且与AB交于点D.
(1)求反比例函数解析式;
(2)若函数y=3x与y=)的图象的另一支交于点M,求三角形0MB与四边形OCDB的面积的比.
V
5
21.某工厂生产一种产品,当生产数量不超过40吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数
⑴求y关于x的函数解析式,并写出自变量的取值范围;
(2)当生产这种产品的总成本为210万元时,求该产品的生产数量.(注:总成本=每吨的成本X生产数量)
22.如图,。。是反42。的外接圆,。点在2C边上,NBAC的平分线交。。于点连接8。、CD,过点。
作的平行线,与A8的延长线相交于点P.
(1)求证:尸。是。。的切线;
(2)若A8=3,AC=4,求线段P8的长.
6
23.若抛物线L:y=ax2+bx+c(a,b,c是常数,abcxO)与直线I都经过y轴上的同一点,且抛物线L的顶点在
直线I上,则称次抛物线L与直线I具有"一带一路"关系,并且将直线I叫做抛物线L的"路线",抛物线L叫做
直线I的“带线
(1)若"路线T的表达式为y=2x-4,它的"带线"L的顶点的横坐标为-1,求"带线”L的表达式;
(2)如果抛物线y=mx2-2mx+m-1与直线y=nx+l具有"一带一路"关系,求m,n的值;
(3)设(2)中的"带线"L与它的"路线T在y轴上的交点为A.已知点P为"带线"L上的点,当以点P为圆心
的圆与"路线T相切于点A时,求出点P的坐标.
A'A
3-
2-
1-
-i--1---------1----1---
-2-10123
-1-
24.如图,内接于圆。,AB为直径,与点。,E为圆外一点,EOLAB,与BC交于点G,
与圆。交于点R连接EC,且EG=EC.
7
E
⑴求证:EC是圆。的切线;
(2)当NABC=22.5。时,连接CF,
①求证:AC=CF;
②若AD=1,求线段FG的长.
参考答案:
1.B
【分析】利用最简二次根式定义判断即可.
【详解】A、原式=变,不符合题意;
2
8
B、是最简二次根式,符合题意;
C、原式=2,不符合题意;
D、原式=26,不符合题意;
故选B.
【点睛】此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.
2.C
【分析】根据所求的数值就是最高气温与最低气温的差,利用有理数的减法法则即可求解.
【详解】解:25-15=10℃,故选C.
【点睛】本题考查了有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.
3.D
【分析】本题主要考查了三角形三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第
三个数.根据"三角形任意两边之和大于第三边,任意两边之差小于第三边"对各选项进行进行逐一分析即可.
【详解】解:根据三角形的三边关系可得:
A、2+2=4,故2,2,4不能组成三角形,故此选项不合题意;
B、5+6=11<12,故5,6,12不能组成三角形,故此选项不合题意;
C、5+2=7,故5,7,2不能组成三角形,故此选项不合题意;
D、6+8=14>10,故6,8,10能组成三角形,故此选项符合题意.
故选:D.
4.B
【详解】试题分析:同底数幕相乘底数不变,指数相加,所以X2・X3=%5,累的乘方,底数不变指数相乘,所以
(x2)3=x6,x2、X3不是同类项,相加不能进行合并.X2+X2=2X2,合并同类项,系数相加,指数不变.故选B
5.B
【详解】根据题意可知N1+Z2=90°,
所以N2=90°-Z1=58°.
故选B
6.A
【详解】【分析】分式方程两边乘以最简公分母x(x-2)即可得到结果.
【详解】两边同时乘以x(x-2),得
x-2=2x,
9
故选A.
【点睛】本题考查了解分式方程,解分式方程的基本思想是"转化思想",把分式方程转化为整式方程求解.解
分式方程一定注意要验根.
7.C
【分析】先说明等腰直角VADE中,等腰直角中,再根据等腰三角形三线合一的性质可得
EH=DH,可判定①;由为直角三角形,NHCE=30°,可得EC=2EH,因为/ECB=15。,
sinNEC8=sinl5。#!,所以ECw4£B,所以蹩工:不成立,则②错误;根据垂直平分线的性质可得
4HE2
CD=CE,再结合=30。可得EC=2由,即可判定③,〃作HMLAB于则可得
AMHs,ABC,利用相似三角形的性质以及底相等的三角形面积之比等于高之比即可判定④,为了便于计
算,设EH=HD=AH=1,先求出SAHE=gxA〃xEH=;,即有S4班=2S入江=1,再求出
SBCE=$BEXBC=;,即可判断⑤.
【详解】解:;AD^BC,ZABC=90°,
:■22MB=90°,
---AE=AD,AB=BC,
■■YADE、ABC是等腰直角三角形,
ABAC^ZAED=45°,即NEHA=90°,
AHLED,则£H=Z)H,
即ACLED,所以①正确;
•••等腰Rt^ABC中,
NAC3=45。,
ZHCE=ZACB-Z.BCE=30°
•.・一CHE为直角三角形,
EC=2EH,
■:NECB=15°,
sinZECB=sin150,
4
/.ECw4EB,
黑片!不成立,②错误;
HE2
AHLED,EH=DH,
10
CD=CE,
ZHCE=3。。,
EC=2EH,
CD=2DH,判定③正确;
・•.在等腰中,AH工ED,
EH=HD=AH,
过〃作于M,则
.MHAH
•AC
SRFHMHAHDH八
二K,故④正确.
Z1C-
SDREFCBCAC
为了便于计算,设EH=HD=AH=1,
S=-XAHXEH=~,
AHEP22
$ADE=2sAHE=1,
EH=HD=AH=1,AH工ED,
AE=母,
■:ZHCE=30°,
EC=2EH=2,
■■■HCNEC—EH。=5
:.AC=AH+HC=1+y/3,
二等腰RtaABC中,AB=BC=—AC=y^+'^
22
BE=AB-AE=^^一母
22
1屈-血A/6+72
x
・.oRvCxFi=—2BExBC=—X------------------X--------------------
2222
11
sADE—2sBCE,故⑤正确.
,正确的有①③④⑤,共4个.
故选:C.
【点睛】本题主要考查了等腰三角形的判定与性质、含30度角的直角三角形、相似三角形的判定与性质,解
直角三角形等知识点,灵活运用相关性质定理是解答本题的关键.
8.C
【分析】本题主要考查行程问题的函数图象,掌握"速度=路程一时间”以及函数图象上的点的坐标的实际意义,
是解题的关键.根据“速度=路程+时间”,可得乙的速度以及甲车再次出发后的速度,即可判断①②;根据
函数图象,可直接判断③;求出甲车再次出发时,乙车行驶的路程,即可得到两车的距离,即可判断④.
【详解】解:乙车的速度为:号=75千米/时,故①错误;
30。-60
甲车再次出发后的速度为:4,36一w千米/时,故②正确;
,4—1---
60
由图象知,两车在到达5地前不会相遇,故③正确;
•••甲车再次出发时,两车相距:75x(l+1^
-60=120-60=60千米,故④正确,
v60
故选:C.
9.A
【分析】当口ABCD的面积最大时,四边形ABCD为矩形,得出NA=NB=NC=ND=90。,AC=BD,根据勾股定理
求出AC,即可得出结论.
【详解】根据题意得:当口ABCD的面积最大时,四边形ABCD为矩形,
ZBAD=ZABC=ZBCD=ZCDA=90°,AC=BD,
ZBAD+ZBCD=180°,AC7AB?+BC?="+不=5,
①正确,②正确,④正确;③不正确;
故选A.
【点睛】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出口ABCD的面积最大时,四边形ABCD
为矩形是解决问题的关键.
10.B
【分析】由"ASA"可证△CDM2△HDN,可证MD=DN,即可证四边形DNKM是菱形,当点B与点E重合时,两
17
张纸片交叉所成的角a最小,可求DM二一,即可求sin。的值.
12
【详解】解:如图,
•••ZADC=ZHDF=90°
ZCDM=ZNDH,且CD=DH,ZH=ZC=90°
△CDMM△HDN(ASA)
MD=ND,且四边形DNKM是平行四边形
四边形DNKM是菱形
KM=DM
CD
sina=sinZDMC=------,
MD
•••当点B与点E重合时,两张纸片交叉所成的角a最小,
设MD=a=BM,贝IJCM=8-a,
■,-MD2=CD2+MC2,
a2=4+(8-a)2,
17
•.3=---,
4
.17
..DM=—,
4
.CD28
sma=-----=-T77=一
DM1717;
z
故选:B.
【点睛】本题考查了三角函数综合,矩形的性质,菱形的判定,勾股定理,全等三角形的判定和性质,求DM
的长是本题的关键.
11.A
【分析】设AB与CD交于H,连接0D,作OM±DE,交BC于N,作DG±BC,根据垂径定理得出CH=DH,DM=EM,
BN=CN,利用勾股定理求得0H,即可求得BH,进而求得BC,求得ON,根据三角形函数求得DG,因为MN=DG,
即可求得0M,根据勾股定理求得DM,得出DE.
13
【详解】解:设AB与CD交于H,连接0D,作OM_LDE,交BC于N,作DGJ_BC,
,/DEIIBC,
/.MN±BC,DG±DE,
四边形DMNG是矩形,
/.DG=MN,
OM±DE,ON±BC,
DM=EM=1DE,BN=CN,
「AB是。。的直径,弦CD_LAB,弦DEIICB.
:CH=DH=^-CD=3,
JOU-DH?752—乎二%
/.BH=9,
:BC=VBH2+CH2=3Vio,
二.B"T,
ON=yJOB2-BN2=
2
BH;DG
,/sinzBCH=——=ZD即焉=『
BC
.9M
..DnGr=--------,
5
9x^0
/.MN=DG=-^—
5
/.OM=MN-0N="M,
10
^>M^y]oD2-OM2=
•-DE=2DM誓.
故选A.
14
【点睛】本题考查了垂径定理和勾股定理的应用,平行线的性质,矩形的判定与性质,以及锐角三角函数的知
识,作出辅助线构建直角三角形是解题的关键.
12.D
【分析】根据BELCP可得点E在以8c为直径的圆上,作点E关于的对称点凡连接。当Q为DF与
AB交点时,QO+QE最小.作半圆〃与以为直径的半圆关于对称,连接。交半圆反与尸,此时。尸
=0D+°E,且为最小值,求出DF即可.
【详解】解:如图,:BE±CP,
.•.点E在以8C为直径的圆上,
作点E关于AB的对称点F
QE=QF,
QD+QE=QD+QF,
连接。F,当。为。尸与AB交点时,QO+QE最小.
作半圆H与以为直径的半圆关于AB对称,连接。H,交半圆友与尸,此时。尸=。。+。瓦且为最小值,此
时C£)=2,BH=1,HC=3,
在R/VDS中,DH=1心+M3+32=而,
DF=V13-1.
15
AD
故选:D
【点睛】本题考查了求两条线段的和的最小值,题目难度较大.解题的关键是通过作对称点将两条线段转化为
一条线段,根据两点之间,线段最短求解.
13.2.8
【分析】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的70%,计算即可.
【详解】;正方形二维码的边长为2c”2,
•••正方形二维码的面积为4cm2,
•••经过大量重复试验,发现点落入黑色部分的频率稳定在0.7左右,
•黑色部分的面积占正方形二维码面积的70%,
•黑色部分的面积约为:4x70%=2.8,
故答案为:2.8.
【点睛】求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形二维码面积的70%,计算即可.
14.28Tl
【分析】根据ACBD”△CAE,即可得到CB=2,AC=8,再根据男孩以6m为半径绕电线杆走一圈,即可得出他
在路灯下的影子BC扫过的面积.
【详解】解:如图所示,
CB
-:AEIIBD,
△CBD~△CAE,
解得CB=2,
16
AC=8,
•••男孩以6m为半径绕电线杆走一圈,他在路灯下的影子BC扫过的面积为nx82-nx62=28nm2.
故答案为28n.
【点睛】本题考查了相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.
15.4
【分析】根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的
面积是《I川=2,再根据反比例函数的图象位于第一象限即可求出人的值.
【详解】连接。艮
ABUx轴,,SzAOB=S/AC2=2,根据题意可知:g因=2,又反比例函数的图象位于第一象限,k>
0,贝必=4.
故答案为4.
【点睛】本题考查了反比例函数系数4的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标
轴围成的矩形面积就等于|修.本知识点是中考的重要考点,同学们应高度关注.
12
16.—.
5
【分析】根据轴对称,可以求得使得AR4B的周长最小时点P的坐标,然后求出点P到直线的距离和A3的
长度,即可求得AftW的面积,本题得以解决.
y=x+l
【详解】联立得
y=x2-4x+5
片;或x=4
解得,
)=2y=5
二点A的坐标为(1,2),点B的坐标为(4,5),
AB=J(5-2)2+(4_咪=372,
作点A关于>轴的对称点4,连接与了轴的交于P,则此时AE4B的周长最小,
点4的坐标为(-1,2),点B的坐标为(4,5),
17
设直线A8的函数解析式为,=质+方,
\-k+b=2卜蓝
]AJ1;,得《[q,
\4k+b=5.13
I5
313
・・・直线AB的函数解析式为》=二兀+《,
13
当%=。时,了二彳,
即点P的坐标为
将x=0代入直线y=x+l中,得y=l,
•••直线y=x+l与V轴的夹角是45。,
•••点尸到直线的距离是:f--lVsin45°=-x^l=^l,
I5)525
【点睛】本题考查二次函数的性质、一次函数的性质、轴对称-最短路径问题,解答本题的关键是明确题意,
利用数形结合的思想解答.
4
17.-cm
3
【分析】本题考查了圆周角定理、相似三角形的判定与性质、三角形中位线定理,连接AC、0D,由圆周角
定理和三角形中位线定理得出点。在以为直径的圆上运动,以。8为直径作:K,当直线AE切K于D
时,8E的值最大,由圆周角定理得出/4DK=NAEB,从而得出DK〃BE,进而得出一ADKS_A£B,由相似
三角形的性质可得空=空,代入计算即可,熟练掌握以上知识点并灵活运用是解此题的关键.
BEAB
【详解】解:如图,连接AC、0D,
18
:.ZACB=90°,
点。是3c的中点,。是A3的中点,
:.OD是AACB的中位线,
:.OD//AC,
:.AODB=9Q°,
,点。在以03为直径的圆上运动,
以。5为直径作K,连接DK,当直线A石切K于。时,此时NRW的度数最大,对应的边的的值也最大,
则OK=3K=lcm,AO=2cm,
.•.A^=OA+OK=2+l=3cm,
AE是K的切线,
:.DK±AE,
:.ZADK=90°,
AB是直径,
:.ZAEB=90°,
,\ZADK=ZAEBf
.'.DK//BE,
:._ADKs_AEB,
DKAK13
——=——,即nn一=一,
BEABBE4
/.B八E厂=—4cm,
3
故答案为:jcm.
18.5-2A/3
【分析】本题主要考查含有指数塞、特殊角三角函数值和二次根式的实数混合运算,根据实数的混合运算法则,
先算指数幕、根式和根式,再算乘除加减即可.
19
【详解】解:原式=1+1一4x^+3
2
=5-2技
19.见详解
【分析】本题主要考查利用平行四边形的性质和折叠得性质证明一件会,CDE,即可证明结论成立.
【详解】证明:・;四边形ABCD为平行四边形,
ZA=ZC,AB=CD,
.•,沿折叠,点C落在点C处,
ZC'=ZC=ZA,CD=CD=AB,
在.ABE和.C'OE中
'NAEB=NC'ED
<NA=ZC
AB=CD
ABE沿一C'DE(AAS),
:EB=ED.
128
20.y=——;-
x5
【分析】(1)先根据锐角三角函数的定义,求出04的值,然后根据勾股定理求出A3的值,然后由。点是
。4的中点,求出C点的坐标,然后将C的坐标代入反比例函数丫=与中,即可确定反比例函数解析式;
X
(2)先将>=3苫与>=1上2联立成方程组,求出点M的坐标,然后求出点。的坐标,然后连接8C,分别求出
X
△的面积,△02C的面积,△BC。的面积,进而确定四边形OCOB的面积,进而可求三角形OAffi与四
边形OCO8的面积的比.
【详解】解:(1)点的坐标为(8,y),
0B=8,
4
轴于点8,sinZOAB=-,
•08一4
••一,
OA5
:.0A=W,
由勾股定理得:AB=NOA-OB2=6,
・・,点。是。4的中点,且在第一象限内,
20
:.C(4,3),
•..点C在反比例函数y=8的图象上,
X
.\k=12f
12
...反比例函数解析式为:J=—;
X
(2)将y=3尤与产上12联立成方程组,得:
X
y=3x
是直线与双曲线另一支的交点,
M(-2,-6),
丁点。在A5上,
・••点。的横坐标为8,
・・•点。在反比例函数>1=2上的图象上,
x
3
・,•点。的纵坐标为:,
2
3
••D(8,—),
2
:.BD=-
29
连接BC,如图所示,
VSM0B=-*8*|-6|=24,
A2
113
S四边形OCDB=S/\OBC+S/\BCD=—*8*3+—•—15,
.SMOB_24_8
••s四边形7?一片
【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求反比例函数的解析式及计算图形面积
21
的问题.解题的关键是:确定交点的坐标.
21.(1)j=-^x+10(0<x<40);
(2)30吨.
【分析】本题主要考查了待定系数法求一次函数解析式及一次函数的实际应用;熟练掌握有关一次函数的基础
知识是解题关键.
(1)利用待定系数法求出一次函数解析式即可,根据图像知生产数量不超过40吨,得出x的定义域;
(2)根据总成本=每吨的成本x生产数量,利用(1)中所求解析式得出答案.
【详解】(1)解:设函数解析式产自+6,将(0,1。)和(40,6)分别代入产田+8,
得(6=40无+6'
10=6
解得:,1,
k=------
110
所以>=一看x+io(oc).
(2)由210=(-jx+io]x,
解得:再=30,%=70,
由于0W40,
故x=30.
答:该产品的生产数量是30吨.
25
22.(1)见解析;(2)PB=三.
O
【分析】(1)由直径所对的圆周角为直角得到为直角,再由为角平分线,得到一对角相等,根据同
弧所对的圆心角等于圆周角的2倍及等量代换确定出/ZJOC为直角,与平行线中的一条垂直,与另一条也垂
直得到。。与尸。垂直,即可得证;
(2)由PO与平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到根
据同角的补角相等得到一对角相等,利用两对角相等的三角形相似;由三角形ABC为直角三角形,利用勾股
定理求出BC的长,再由。。垂直平分8C,得至相似三角形的性质,得比例,求出所求即可.
【详解】(1)证明:・・・圆心。在8C上,
8C是圆。的直径,
22
ZBAC=90°,
「AO平分NBA。,
/.ZBAC=2NDAC,
,/ZDOC=2NDAC,
:.ZDOC=ZBAC=90°,即OD1.BC,
,/PDWBC,
:,OD工PD,
v0。为圆。的半径,
.•.尸。是圆。的切线;
(2)「PDWBC,
/.ZP=NABC,
':ZABC=ZADC,
/.ZP=NADC,
•/ZPBD+ZABD=180°,ZACD+ZABD=180°,
/.ZPBD=NACD,
△PBDs△DCA;
•••△ABC为直角三角形,
BC2=AB2+AC2=32+42=25,
BC=5,
•••。。垂直平分BC,
DB=DC,
rBC为圆。的直径,
ZBDC=90°,
在RtAOBC中,DB2+DC2=BC2,BP2DC2=BC2=25,
23
<5
DC=DB=*,
2
,/△PBDs△DCA,
.PBBD
一~DC~~\C"
5>/|5>/2
贝ijPB=DCBD_m_25.
AC4~~8
【点睛】此题考查了相似三角形的判定与性质,切线的判定与性质,熟练掌握各自的判定与性质是解本题的关
键.
917
23.(1)〃带线〃L的表达式为y=2x2+4x-4;(2)m=2,n=-2;(3)点P的坐标为(了,—
48
【详解】试题分析:
(1)由"路线/”的表达式为:y=2x-4可得,"路线/”与y轴交于点(0,-4);把x=-l代入y=2x-4可得y=-6,由
此可得"带线L”的顶点坐标为(-1,-6),结合"带线L”过点(0,-4)即可求得"带线L”的解析式;
(2)由y=mx2-2mx+m-l=m(m-l)2-:L可得"带线L”的顶点坐标为(1,-1),与y轴交于点(0,m-1),把这两
个点的坐标代入y=nx+l即可求得m、n的值;
(3)如图,由(2)可知,若设"带线L"的顶点为B,则点B坐标为(1,-1),过点B作BC_Ly轴于点C,连
接PA并延长交x轴于点D,由。P与“路线”/相切于点A可得PD_L/于点A,由止匕证RSAODVRtABCA即可求
得点D的坐标,结合点A的坐标即可求得AD的解析式为y=1x+l,由AD的解析式和“带线L”的解析式组成方
程组,解方程组即可求得点P的坐标.
试题解析:
((Q・••"带线"L的顶点横坐标是-1,且它的"路线"/的表达式为y=2x-4
/.y=2x(-1)-4=-6,
二"带线"L的顶点坐标为(-1,-6).
设L的表达式为y=a(x+1)2-6,
"路线〃y=2x-4与y轴的交点坐标为(0,-4)
「•〃带线”也经过点(0,-4),将(0,-4)代入L的表达式,解得a=2
"带线"L的表达式为y=2(x+1)2-6=2x2+4x-4;
(2):,直线y=nx+l与y轴的交点坐标为(0,1),
「•抛物线y=mx2-2mx+m-1与y轴的交点坐标也为(0,1),解得m=2,
抛物线表达式为y=2x2-4x+l,其顶点坐标为(1,-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 搬家保洁服务合同模板
- 民间合资办厂合同模板
- 港澳劳务派遣合同范例
- 水泥代加工合同范例
- 和善园加盟合同范例
- 浴池转让合同范例
- 建筑单位人员合同范例
- 服务协议合同模板
- 煤炭短期销售合同范例
- 林地盖房子合同范例
- 化工厂拆除施工方案
- 海南自贸港优化营商环境条例7大亮点解读课件
- 中国邮政储蓄银行2024年下半年社会招聘高频难、易错点500题模拟试题附带答案详解
- 《中华人民共和国道路交通安全法实施条例》知识专题培训
- 统编版(2024)语文七年级上册 第10课 往事依依 公开课一等奖创新教案
- 2024-2030年中国户外电源行业市场趋势调查及需求场景趋势分析报告
- 《淘气的一天》(教案)-2024-2025学年一年级上册数学北师大版
- 职业健康安全培训课件(共32张课件)
- 离婚协议书常用范本2024年
- 2024年各地中考语文卷【综合性学习题】汇集练附答案解析
- 人教新目标八年级英语上册《任务型阅读》专项练习题(含答案)
评论
0/150
提交评论