版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江哈尔滨市省实验中学2024年数学高一下期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列关于极限的计算,错误的是()A.B.C.D.已知,则2.已知,,则()A.1 B.2 C. D.33.等比数列{an}中,a3=12A.3×10-5C.128 D.3×2-54.设是等比数列,则“”是“数列是递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.变量满足,目标函数,则的最小值是()A. B.0 C.1 D.-16.将函数f(x)=sin(ωx+)(ω>0)的图象向左平移个单位,所得到的函数图象关于y轴对称,则函数f(x)的最小正周期不可能是()A. B. C. D.7.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.218.函数的部分图象如图中实线所示,图中圆与的图象交于两点,且在轴上,则下列说法中正确的是A.函数的最小正周期是B.函数的图象关于点成中心对称C.函数在单调递增D.函数的图象向右平移后关于原点成中心对称9.已知向量满足:,,,则()A. B. C. D.10.对具有线性相关关系的变量,有观测数据,已知它们之间的线性回归方程是,若,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的图象过点,则___________.12.由于坚持经济改革,我国国民经济继续保持了较稳定的增长.某厂2019年的产值是100万元,计划每年产值都比上一年增加,从2019年到2022年的总产值为______万元(精确到万元).13.我国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天走的路程为__________里.14.在中,角所对的边分别为.若,,则角的大小为____________________.15.已知正实数满足,则的最小值为__________.16.给出下列四个命题:①正切函数在定义域内是增函数;②若函数,则对任意的实数都有;③函数的最小正周期是;④与的图象相同.以上四个命题中正确的有_________(填写所有正确命题的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:;(2)化简:.18.已知角的顶点与原点重合,始边与轴的非负半轴重合,终边过点.(1)求的值;(2)已知为锐角,,求的值.19.在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.(1)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;(2)设直线与圆交于不同的两点、,且,求圆的方程;(3)设直线与(2)中所求圆交于点、,为直线上的动点,直线、与圆的另一个交点分别为、,求证:直线过定点.20.已知等差数列与等比数列满足,,且.(1)求数列,的通项公式;(2)设,是否存在正整数,使恒成立?若存在,求出的值;若不存在,请说明理由.21.已知圆与圆:关于直线对称.(1)求圆的标准方程;(2)已知点,若与直线垂直的直线与圆交于不同两点、,且是钝角,求直线在轴上的截距的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
先计算每个极限,再判断,如果是数列和的极限还需先求和,再求极限.【详解】,A正确;∵,∴,B错;,C正确;若,需按奇数项和偶数项分别求和后再极限,即,D正确.故选:B.【点睛】本题考查数列的极限,掌握极限运算法则是解题基础.在求数列前n项和的极限时,需先求出数列的前n项和,再对和求极限,不能对每一项求极限再相加.2、A【解析】
根据向量的坐标运算法则直接求解.【详解】因为,,所以,所以,故选:A.【点睛】本题考查向量的坐标运算,属于基础题.3、D【解析】
根据等比数列的通项公式得到公比,进而得到通项.【详解】设公比为q,则12q+12q=30,∴∴q=2或q=12,∴a10即3×29或故选D.【点睛】本题考查了等比数列通项公式的应用,属于简单题.4、B【解析】
由,可得,解得或,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解,得到答案.【详解】设等比数列的公比为,则,可得,解得或,此时数列不一定是递增数列;若数列为递增数列,可得或,所以“”是“数列为递增数列”的必要不充分条件.故选:B.【点睛】本题主要考查了等比数列的通项公式与单调性,以及充分条件、必要条件的判定,其中解答中熟记等比数列的单调性的判定方法是解答本题的关键,着重考查了推理与运算能力,属于基础题.5、D【解析】
先画出满足条件的平面区域,将变形为:,平移直线得直线过点时,取得最小值,求出即可.【详解】解:画出满足条件的平面区域,如图示:
由得:,
平移直线,显然直线过点时,最小,
由,解得:
∴最小值,
故选:D.【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.6、D【解析】
利用函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,求得函数的最小正周期为,由此得出结论.【详解】解:将函数的图象向左平移个单位,可得的图象,根据所得到的函数图象关于轴对称,可得,即,.函数的最小正周期为,则函数的最小正周期不可能是,故选.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,属于基础题.7、C【解析】
通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.8、B【解析】
根据函数的图象,求得函数,再根据正弦型函数的性质,即可求解,得到答案.【详解】根据给定函数的图象,可得点的横坐标为,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,当时,,即函数的一个对称中心为,即函数的图象关于点成中心对称.故选B.【点睛】本题主要考查了由三角函数的图象求解函数的解析式,以及三角函数的图象与性质,其中解答中根据函数的图象求得三角函数的解析式,再根据三角函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及运算与求解能力,属于基础题.9、D【解析】
首先根据题中条件求出与的数量积,然后求解即可.【详解】由题有,即,,所以.故选:D.【点睛】本题主要考查了向量的模,属于基础题.10、A【解析】
先求出,再由线性回归直线通过样本中心点即可求出.【详解】由题意,,因为线性回归直线通过样本中心点,将代入可得,所以.故选:A.【点睛】本题主要考查线性回归直线通过样本中心点这一知识点的应用,属常规考题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由过点,求得a,代入,令,即可得到本题答案【详解】因为的图象过点,所以,所以,故.故答案为:-5【点睛】本题主要考查函数的解析式及利用解析式求值.12、464【解析】
根据等比数列求和公式求解【详解】由题意得从2019年到2022年各年产值构成以100为首项,1.1为公比的等比数列,其和为【点睛】本题考查等比数列应用以及等比数列求和公式,考查基本分析求解能力,属基础题13、192【解析】设每天走的路程里数为由题意知是公比为的等比数列∵∴∴故答案为14、【解析】本题考查了三角恒等变换、已知三角函数值求角以及正弦定理,考查了同学们解决三角形问题的能力.由得,所以由正弦定理得,所以A=或(舍去)、15、6【解析】
由题得,解不等式即得x+y的最小值.【详解】由题得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值为6.当且仅当x=y=3时取等.故答案为:6【点睛】本题主要考查基本不等式求最值,意在考查学生对该知识的理解掌握水平和分析推理能力.16、②③④【解析】
①利用反例证明命题错误;②先判断为其中一条对称轴;③通过恒等变换化成;④对两个解析式进行变形,得到定义域和对应关系均一样.【详解】对①,当,显然,但,所以,不符合增函数的定义,故①错;对②,当时,,所以为的一条对称轴,当取,取时,显然两个数关于直线对称,所以,即成立,故②对;对③,,,故③对;对④,因为,,两个函数的定义域都是,解析式均为,所以函数图象相同,故④对.综上所述,故填:②③④.【点睛】本题对三角函数的定义域、值域、单调性、对称性、周期性等知识进行综合考查,求解过程中要注意数形结合思想的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-2(2)【解析】
(1)利用特殊角的三角函数值求得表达式的值.(2)利用诱导公式化简所求表达式.【详解】(1).(2).【点睛】本小题主要考查特殊角的三角函数值,考查诱导公式,属于基础题.18、(1);(2).【解析】
(1)利用三角函数的定义可求出,再根据二倍角的余弦公式即可求解.(2)由(1)可得,再利用同角三角函数的基本关系可得,由,利用两角差的正切公式即可求解.【详解】解:(1)依题意得,,,所以.(2)由(1)得,,故.因为,,,所以,又因为,所以,.所以,所以.【点睛】本小题主要考查同角三角函数关系、三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想等.19、(1)证明见解析;(2);(3)证明见解析.【解析】
(1)由题意设圆心坐标为,可得半径为,求出圆的方程,分别令、,可得出点、的坐标,利用三角形的面积公式即可证明出结论成立;(2)由,知,利用两直线垂直的等价条件:斜率之积为,解方程可得,讨论的取值,求得圆心到直线的距离,即可得到所求圆的方程;(3)设,、,求得、的坐标,以及直线、的方程,联立圆的方程,利用韦达定理,结合,得出,设直线的方程为,代入圆的方程,利用韦达定理,可得、之间的关系,即可得出所求的定点.【详解】(1)由题意可设圆心为,则圆的半径为,则圆的方程为,即.令,得,得;令,得,得.(定值);(2)由,知,所以,解得.当时,圆心到直线的距离小于半径,符合题意;当时,圆心到直线的距离大于半径,不符合题意.所以,所求圆的方程为;(3)设,,,又知,,所以,.因为,所以.将,代入上式,整理得.①设直线的方程为,代入,整理得.所以,.代入①式,并整理得,即,解得或.当时,直线的方程为,过定点;当时,直线的方程为,过定点检验定点和、共线,不合题意,舍去.故过定点.【点睛】本题考查圆的方程的求法和运用,注意运用联立直线方程和圆的方程,消去一个未知数,运用韦达定理,考查直线恒过定点的求法,考查运算能力,属于难题.20、(1),.(2)存在正整数,,证明见解析【解析】
(1)根据题意,列出关于d与q的两个等式,解方程组,即可求出。(2)利用错位相减求出,再讨论求出的最小值,对应的n值即为所求的k值。【详解】(1)解:设等差数列与等比数列的公差与公比分别为,,则,解得,于是,,.(2)解:由,即,①,②①②得:,从而得.令,得,显然、所以数列是递减数列,于是,对于数列,当为奇数时,即,,,…为递减数列,最大项为,最小项大于;当为偶数时,即,,,…为递增数列,最小项为,最大项大于零且小于,那么数列的最小项为.故存在正整数,使恒成立.【点睛】本题考查等差等比数列,利用错位相减法求差比数列的前n项和,并讨论其最值,属于难题。21、(1);(2)【解析】
(1)根据两圆对称,直径一样,只需圆心对称即可得圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 政府公共关系(第二版)课件 第13章 政府公共关系危机管理
- 初中综合实践活动计划
- 《朝花夕拾》读后感作文10篇
- 商务工作计划3篇
- 2025年己二酸二甲酯合作协议书
- 2025年多功能水质现场监测仪项目合作计划书
- 2025年脱毛剂合作协议书
- 人教版初中化学总复习
- 吊车租赁合同范本
- 门市房租房协议
- “双主体”协同育人背景下职业院校康复人才培养模式进展的研究获奖科研报告
- 2023年建筑继续教育考试:安全员继续教育真题模拟汇编(共830题)
- 外科科主任工作计划
- 人教部编版八年级语文上册名著导读《红星照耀中国》复习素材
- 【个人简历】大学生职业生涯规划书10篇
- 患者满意度调查分析
- YS/T 1149.2-2016锌精矿焙砂化学分析方法第2部分:酸溶锌量的测定Na2EDTA滴定法
- GB/T 11017.1-2002额定电压110kV交联聚乙烯绝缘电力电缆及其附件第1部分:试验方法和要求
- 原料药FDA现场GMP符合性要求与检查实践课件
- 基础化工行业深度:电解液新型锂盐材料之双氟磺酰亚胺锂(LiFSI)市场潜力可观新型锂盐LiFSI国产化进程加速
- 年产10000吨一次性自然降解环保纸浆模塑餐具自动化生产线技改项目环境影响报告表
评论
0/150
提交评论