2023-2024学年新疆生产建设兵团一师高中高一数学第二学期期末统考模拟试题含解析_第1页
2023-2024学年新疆生产建设兵团一师高中高一数学第二学期期末统考模拟试题含解析_第2页
2023-2024学年新疆生产建设兵团一师高中高一数学第二学期期末统考模拟试题含解析_第3页
2023-2024学年新疆生产建设兵团一师高中高一数学第二学期期末统考模拟试题含解析_第4页
2023-2024学年新疆生产建设兵团一师高中高一数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年新疆生产建设兵团一师高中高一数学第二学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平行四边形中,,,则点的坐标为()A. B. C. D.2.已知,是两条不同的直线,,是两个不同的平面,给出下列四个结论:①,,,则;②若,,,则;③若,,,则;④若,,,则.其中正确结论的序号是A.①③ B.②③ C.①④ D.②④3.已知,,,,那么()A. B. C. D.4.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是()A. B. C. D.5.直线的倾斜角为()A. B. C. D.6.如直线与平行但不重合,则的值为().A.或2 B.2 C. D.7.中,,,,则的面积等于()A. B. C.或 D.或8.执行如图所示的程序框图,若输入,则输出()A.13 B.15 C.40 D.469.不等式的解集为,则不等式的解集为()A.或 B. C. D.或10.已知的顶点坐标为,,,则边上的中线的长为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将角度化为弧度:________.12.在平面直角坐标系中,点,,若直线上存在点使得,则实数的取值范围是_____.13.将函数f(x)=cos(2x)的图象向左平移个单位长度后,得到函数g(x)的图象,则下列结论中正确的是_____.(填所有正确结论的序号)①g(x)的最小正周期为4π;②g(x)在区间[0,]上单调递减;③g(x)图象的一条对称轴为x;④g(x)图象的一个对称中心为(,0).14.已知,且,则的值是_______.15.若直线与曲线相交于A,B两点,O为坐标原点,当的面积取最大值时,实数m的取值____.16.定义在上的函数,对任意的正整数,都有,且,若对任意的正整数,有,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆心在直线上的圆C经过点,且与直线相切.(1)求过点P且被圆C截得的弦长等于4的直线方程;(2)过点P作两条相异的直线分别与圆C交于A,B,若直线PA,PB的倾斜角互补,试判断直线AB与OP的位置关系(O为坐标原点),并证明.18.已知,,且向量与的夹角为.(1)若,求;(2)若与垂直,求.19.已知.(1)若不等式的解集为,求的值;(2)解不等式.20.已知向量,.(Ⅰ)求;(Ⅱ)若向量与垂直,求的值.21.同时抛掷两枚骰子,并记下二者向上的点数,求:二者点数相同的概率;两数之积为奇数的概率;二者的数字之和不超过5的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

先求,再求,即可求D坐标【详解】,∴,则D(6,1)故选A【点睛】本题考查向量的坐标运算,熟记运算法则,准确计算是关键,是基础题2、C【解析】

利用面面垂直的判定定理判断①;根据面面平行的判定定理判断②;利用线面垂直和线面平行的性质判断③;利用线面垂直和面面平行的性质判断④【详解】①,,或,又,则成立,故正确②若,,或和相交,并不一定平行于,故错误③若,,则或,若,则并不一定平行于,故错误④若,,,又,成立,故正确综上所述,正确的命题的序号是①④故选【点睛】本题主要考查了命题的真假判断和应用,解题的关键是理解线面,面面平行与垂直的判断定理和性质定理,属于基础题.3、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.4、D【解析】

先求出AB的长,再求点P到直线AB的最小距离和最大距离,即得△ABP面积的最小值和最大值,即得解.【详解】由题得,由题得圆心到直线AB的距离为,所以点P到直线AB的最小距离为2-1=1,最大距离为2+1=3,所以△ABP的面积的最小值为,最大值为.所以△ABP的面积的取值范围为[1,3].故选D【点睛】本题主要考查点到直线的距离的计算,考查面积的最值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、D【解析】

求出斜率,根据斜率与倾斜角关系,即可求解.【详解】化为,直线的斜率为,倾斜角为.故选:D.【点睛】本题考查直线方程一般式化为斜截式,求直线的斜率、倾斜角,属于基础题.6、C【解析】

两直线斜率相等,且截距不相等。【详解】解析:由题意得,,解得或2,经检验时两直线重合,故.故选C.【点睛】本题考查两直线平行,属于基础题.7、D【解析】

先根据余弦定理求AC,再根据面积公式得结果.【详解】因为,所以或2,因此的面积等于或等于,选D.【点睛】本题考查余弦定理与三角形面积公式,考查基本求解能力,属基础题.8、A【解析】

模拟程序运行即可.【详解】程序运行循环时,变量值为,不满足;,不满足;,满足,结束循环,输出.故选A.【点睛】本题考查程序框图,考查循环结构.解题时可模拟程序运行,观察变量值的变化,判断是否符合循环条件即可.9、A【解析】不等式的解集为,的两根为,,且,即,解得则不等式可化为解得故选10、D【解析】

利用中点坐标公式求得,再利用两点间距离公式求得结果.【详解】由,可得中点又本题正确选项:【点睛】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据角度和弧度的互化公式求解即可.【详解】.故答案为:.【点睛】本题考查角度和弧度的互化公式,属于基础题.12、.【解析】

设由,求出点轨迹方程,可判断其轨迹为圆,点又在直线,转化为直线与圆有公共点,只需圆心到直线的距离小于半径,得到关于的不等式,求解,即可得出结论.【详解】设,,,,整理得,又点在直线,直线与圆共公共点,圆心到直线的距离,即.故答案为:.【点睛】本题考查求曲线的轨迹方程,考查直线与圆的位置关系,属于中档题.13、②④.【解析】

利用函数的图象的变换规律求得的解析式,再利用三角函数的周期性、单调性、图象的对称性,即可求解,得到答案.【详解】由题意,将函数的图象向左平移个单位长度后,得到的图象,则函数的最小正周期为,所以①错误的;当时,,故在区间单调递减,所以②正确;当时,,则不是函数的对称轴,所以③错误;当时,,则是函数的对称中心,所以④正确;所以结论正确的有②④.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的图象与性质的判定,其中解答熟记三角函数的图象变换,以及三角函数的图象与性质,准确判定是解答的关键,着重考查了推理与运算能力,属于中档试题.14、【解析】

计算出的值,然后利用诱导公式可求得的值.【详解】,,则,因此,.故答案为:.【点睛】本题考查利用诱导公式求值,同时也考查了同角三角函数基本关系的应用,考查计算能力,属于基础题.15、【解析】

点O到的距离,将的面积用表示出来,再利用均值不等式得到答案.【详解】曲线表示圆心在原点,半径为1的圆的上半圆,若直线与曲线相交于A,B两点,则直线的斜率,则点O到的距离,又,当且仅当,即时,取得最大值.所以,解得舍去).故答案为.【点睛】本题考查了点到直线的距离,三角形面积,均值不等式,意在考查学生的计算能力.16、【解析】

根据条件求出的表达式,利用等比数列的定义即可证明为等比数列,即可求出通项公式.【详解】令,得,则,,令,得,则,,令,得,即,则,即所以,数列是等比数列,公比,首项.所以,故答案为:【点睛】本题主要考查等比数列的判断和证明,综合性较强,考查学生的计算能力,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)平行【解析】

(1)设出圆的圆心为,半径为,可得圆的标准方程,根据题意可得,解出即可得出圆的方程,讨论过点P的直线斜率存在与否,再根据点到直线的距离公式即可求解.(2)由题意知,直线PA,PB的倾斜角互补,分类讨论两直线的斜率存在与否,当斜率均存在时,则直线PA的方程为:,直线PB的方程为:,分别与圆C联立可得,利用斜率的计算公式与作比较即可.【详解】(1)根据题意,不妨设圆C的圆心为,半径为,则圆C,由圆C经过点,且与直线相切,则,解得,故圆C的方程为:,所以点在圆上,过点P且被圆C截得的弦长等于4的直线,当直线的斜率不存在时,直线为:,满足题意;当直线的斜率存在时,设直线的斜率为,直线方程为:,故,解得,故直线方程为:.综上所述:所求直线的方程:或.(2)由题意知,直线PA,PB的倾斜角互补,且直线PA,PB的斜率均存在,设两直线的倾斜角为和,,,因为,由正切的性质,则,不妨设直线的斜率为,则PB的斜率为,即:,则:,由,得,点的横坐标为一定是该方程的解,故可得,同理,,,,直线AB与OP平行.【点睛】本题考查了圆的标准方程,已知弦长求直线方程,考查了直线与圆的位置关系以及学生的计算能力,属于中档题.18、(1);(2)【解析】

(1)根据平面向量的数量积公式计算的值;(2)根据两向量垂直数量积为0,列方程求出cosθ的值和对应角θ的值.【详解】(1)因为,所以(2)因为与垂直,所以即,所以又,所以【点睛】本题考查了平面向量的数量积与模长和夹角的计算问题,是基础题.19、(1);(2)时,解集为,时,解集为,时解集为.【解析】

(1)由一元二次不等式的解集一一元二次方程的解之间的联系求解;(2)按和的大小分类讨论.【详解】(1)由题意的解集为,则方程的解为1和4,∴,解得;(2)不等式为,时,,此时不等式解集为,时,,,当时,,。综上,原不等式的解集:时,解集为,时,解集为,时解集为.【点睛】本题考查解一元二次不等式,掌握三个二次的关系是解题关键,解题时注意对参数分类讨论.20、(Ⅰ)-1;(Ⅱ)【解析】

(Ⅰ)利用向量的数量积的坐标表示进行计算;(Ⅱ)由垂直关系,得到坐标间的等式关系,然后计算出参数的值.【详解】解:(Ⅰ)因向量,∴,∴(Ⅱ),∵向量与垂直,∴∴,∴【点睛】已知,若,则有;已知,若,则有.21、(1)(2)(3)【解析】

把两个骰子分别记为红色和黑色,则问题中含有基本事件个数,记事件A表示“二者点数相同”,利用列举法求出事件A中包含6个基本事件,由此能求出二者点数相同的概率.记事件B表示“两数之积为奇数”,利用列举法求出事件B中含有9个基本事件,由此能求出两数之积为奇数的概率.记事件C表示“二者的数字之和不超过5”,利用列举法求出事件C中包含的基本事件有10个,由此能求出二者的数字之和不超过5的概率.【详解】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论