浙江省普通高校2024年高一数学第二学期期末学业水平测试试题含解析_第1页
浙江省普通高校2024年高一数学第二学期期末学业水平测试试题含解析_第2页
浙江省普通高校2024年高一数学第二学期期末学业水平测试试题含解析_第3页
浙江省普通高校2024年高一数学第二学期期末学业水平测试试题含解析_第4页
浙江省普通高校2024年高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省普通高校2024年高一数学第二学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某市举行“精英杯”数学挑战赛,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校所有学生的成绩均在区间内,其频率分布直方图如图所示,该校有130名学生获得了复赛资格,则该校参加初赛的人数约为()A.200 B.400 C.2000 D.40002.等比数列中,,则等于()A.16 B.±4 C.-4 D.43.已知扇形的圆心角为120°,半径为6,则扇形的面积为()A. B. C. D.4.直线的倾斜角是()A. B. C. D.5.如图,在圆心角为直角的扇形中,分别以为直径作两个半圆,在扇形内随机取一点,则此点取自阴影部分的概率是()A. B. C. D.6.己知函数的最小值为,最大值为,若,则数列是()A.公差不为0的等差数列 B.公比不为1的等比数列C.常数数列 D.以上都不对7.设,是定义在上的两个周期函数,的周期为,的周期为,且是奇函数.当时,,,其中.若在区间上,函数有个不同的零点,则的取值范围是()A. B. C. D.8.某学生四次模拟考试时,其英语作文的减分情况如下表:考试次数x

1

2

3

4

所减分数y

4.5

4

3

2.5

显然所减分数y与模拟考试次数x之间有较好的线性相关关系,则其线性回归方程为()A.y=0.7x+5.25 B.y=﹣0.6x+5.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.259.直线的倾斜角为()A. B. C. D.10.函数,当上恰好取得5个最大值,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.用秦九韶算法求多项式当时的值的过程中:,__.12.已知a,b,x均为正数,且a>b,则____(填“>”、“<”或“=”).13.若关于的方程()在区间有实根,则最小值是____.14.若,则______.15.若正实数满足,则的最大值为__________.16.下图是2016年在巴西举行的奥运会上,七位评委为某体操运动员的单项比赛打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某市地铁全线共有四个车站,甲、乙两人同时在地铁第1号车站(首发站)乘车,假设每人自第2号站开始,在每个车站下车是等可能的,约定用有序实数对表示“甲在号车站下车,乙在号车站下车”(Ⅰ)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(Ⅱ)求甲、乙两人同在第3号车站下车的概率;(Ⅲ)求甲、乙两人在不同的车站下车的概率.18.已知,为第二象限角.(1)求的值;(2)求的值.19.已知.(1)求的值;(2)求的值.20.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:21.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由频率和为1,可算得成绩大于90分对应的频率,然后由频数÷总数=频率,即可得到本题答案.【详解】由图,得成绩大于90分对应的频率=,设该校参加初赛的人数为x,则,得,所以该校参加初赛的人数约为200.故选:A【点睛】本题主要考查频率直方图的相关计算,涉及到频率和为1以及频数÷总数=频率的应用.2、D【解析】分析:利用等比中项求解.详解:,因为为正,解得.点睛:等比数列的性质:若,则.3、C【解析】

根据扇形的面积公式即可求得.【详解】解:由题意:,所以扇形的面积为:故选:C【点睛】本题考查扇形的面积公式,考查运算求解能力,核心是记住公式.4、D【解析】

先求出直线的斜率,再求直线的倾斜角.【详解】由题得直线的斜率.故选:D【点睛】本题主要考查直线的斜率和倾斜角的计算,意在考查学生对该知识的理解掌握水平和分析推理能力.5、A【解析】试题分析:设扇形半径为,此点取自阴影部分的概率是,故选B.考点:几何概型.【方法点晴】本题主要考查几何概型,综合性较强,属于较难题型.本题的总体思路较为简单:所求概率值应为阴影部分的面积与扇形的面积之比.但是,本题的难点在于如何求阴影部分的面积,经分析可知阴影部分的面积可由扇形面积减去以为直径的圆的面积,再加上多扣一次的近似“椭圆”面积.求这类图形面积应注意切割分解,“多还少补”.6、C【解析】

先根据判别式法求出的取值范围,进而求得和的关系,再展开算出分析即可.【详解】设,则,因为,故,故二次函数,整理得,故与为方程的两根,所以为常数.故选C.【点睛】本题主要考查判别式法求分式函数范围的问题,再根据二次函数的韦达定理进行求解分析即可.7、B【解析】

根据题意可知,函数和在上的图象有个不同的交点,作出两函数图象,即可数形结合求出.【详解】作出两函数的图象,如图所示:由图可知,函数和在上的图象有个不同的交点,故函数和在上的图象有个不同的交点,才可以满足题意.所以,圆心到直线的距离为,解得,因为两点连线斜率为,所以,.故选:B.【点睛】本题主要考查了分段函数的图象应用,函数性质的应用,函数的零点个数与两函数图象之间的交点个数关系的应用,意在考查学生的转化能力和数形结合能力,属于中档题.8、D【解析】试题分析:先求样本中心点,利用线性回归方程一定过样本中心点,代入验证,可得结论.解:先求样本中心点,,由于线性回归方程一定过样本中心点,代入验证可知y=﹣0.7x+5.25,满足题意故选D.点评:本题考查线性回归方程,解题的关键是利用线性回归方程一定过样本中心点,属于基础题.9、D【解析】

求出斜率,根据斜率与倾斜角关系,即可求解.【详解】化为,直线的斜率为,倾斜角为.故选:D.【点睛】本题考查直线方程一般式化为斜截式,求直线的斜率、倾斜角,属于基础题.10、C【解析】

先求出取最大值时的所有的解,再解不等式,由解的个数决定出的取值范围.【详解】设,所以,解得,所以满足的值恰好只有5个,所以的取值可能为0,1,2,3,4,由,故选C.【点睛】本题主要考查正弦函数的最值以及不等式的解法,意在考查学生的数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,进而得出.【详解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,当x=2时,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案为:1.【点睛】本题考查了秦九韶算法,考查了推理能力与计算能力,属于基础题.12、<【解析】

直接利用作差比较法解答.【详解】由题得,因为a>0,x+a>0,b-a<0,x>0,所以所以.故答案为<【点睛】本题主要考查作差比较法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、【解析】

将看作是关于的直线方程,则表示点到点的距离的平方,根据距离公式可求出点到直线的距离最小,再结合对勾函数的单调性,可求出最小值。【详解】将看作是关于的直线方程,表示点与点之间距离的平方,点到直线的距离为,又因为,令,在上单调递增,所以,所以的最小值为.【点睛】本题主要考查点到直线的距离公式以及对勾函数单调性的应用,意在考查学生转化思想的的应用。14、【解析】

,则,故答案为.15、【解析】

可利用基本不等式求的最大值.【详解】因为都是正数,由基本不等式有,所以即,当且仅当时等号成立,故的最大值为.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.16、【解析】由平均数公式可得,故所求数据的方差是,应填答案。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(2,2)、(2,3)、(2,4)、(3,2)、(3,3)、(3,4)、(4,2)、(4,3)、(4,4)(Ⅱ)(Ⅲ)【解析】(Ⅰ)甲、乙两人下车的所有可能的结果为(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4)(Ⅱ)设甲、乙两人同在第3号车站下车的的事件为A,则(Ⅲ)设甲、乙两人在不同的车站下车的事件为B,则18、(1);(2)【解析】

(1)根据同角三角函数平方关系即可求得结果;(2)利用同角三角函数商数关系可求得,代入两角和差正切公式可求得结果.【详解】(1)为第二象限角(2)由(1)知:【点睛】本题考查同角三角函数值的求解、两角和差正切公式的应用;易错点是忽略角所处的范围,造成三角函数值符号求解错误.19、(1);(2).【解析】试题分析:(1)要求的值,根据两角和的正弦公式,可知还要求得,由于已知,所以,利用同角关系可得;(2)要求,由两角差的余弦公式我们知要先求得,而这由二倍角公式结合(1)可很容易得到.本题应该是三角函数最基本的题型,只要应用公式,不需要作三角函数问题中常见的“角”的变换,“函数名称”的变换等技巧,可以算得上是容易题,当然要正确地解题,也必须牢记公式,及计算正确.试题解析:(1)由题意,所以.(2)由(1)得,,所以.【考点】三角函数的基本关系式,二倍角公式,两角和与差的正弦、余弦公式.20、见解析【解析】

(1)根据表中所给数据,求出横标的平均数,把求得的数据代入线性回归方程的系数公式,利用最小二乘法得到结果,写出线性回归方程。(2)根据二问求得的线性回归方程,代入所给的的值,预报出销售价格的估计值,这个数字不是一个准确数值。【详解】(1)由题意可得,,因此,,所以,-所以;(2)由(1)可得,当时,(万元),即星期日估计活动的利润为10.1万元。【点睛】关键点通过参考公式求出,的值,通过线性回归方程求解的是一个估计值。21、(1)B(0,7)(2)19x+y-7=0【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论