版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年黑龙江省大庆市红岗区铁人中学高一下数学期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某三棱锥的三视图如图所示,该三棱锥的外接球表面积为()A. B. C. D.2.设函数,,其中,.若,且的最小正周期大于,则()A., B.,C., D.,3.已知定义域的奇函数的图像关于直线对称,且当时,,则()A. B. C. D.4.在正四棱柱,,则异面直线与所成角的余弦值为A. B. C. D.5.下列说法中,正确的是()A.若,则B.若,则C.若,则D.若,则6.已知全集,则集合A. B. C. D.7.设,是两个不同的平面,a,b是两条不同的直线,给出下列四个命题,正确的是()A.若,,则 B.若,,,则C.若,,,则 D.若,,,则8.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.9.已知是第二象限角,且,则的值为A. B. C. D.10.函数的简图是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,角的对边分别为,且面积为,则面积的最大值为_____.12.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.13.已知向量,,若,则实数___________.14.在平面直角坐标系中,在轴、轴正方向上的投影分别是、,则与同向的单位向量是__________.15.若A(-2,3),B(3,-2),C(4,m)三点共线则m的值为________.16.函数的最小正周期为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.18.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.19.已知函数.(I)比较,的大小.(II)求函数的最大值.20.已知数列是等差数列,,.(1)从第几项开始;(2)求数列前n项和的最大值.21.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
根据三视图还原几何体,由三棱锥的几何特征即可求出其外接球表面积.【详解】根据三视图可知,该几何体如图所示:所以该几何体的外接球,即是长方体的外接球.因为,所以外接球直径.故该三棱锥的外接球表面积为.故选:D.【点睛】本题主要考查由三视图还原几何体,并计算其外接球的表面积,意在考查学生的直观想象能力和数学运算能力,属于基础题.2、B【解析】
根据周期以及最值点和平衡位置点先分析的值,然后带入最值点计算的值.【详解】因为,,所以,则,所以,即,故;则,代入可得:且,所以.故选B.【点睛】(1)三角函数图象上,最值点和平衡位置的点之间相差奇数个四分之一周期的长度;(2)计算的值时,注意选用最值点或者非特殊位置点,不要选用平衡位置点(容易多解).3、D【解析】
根据函数的图像关于直线对称可得,再结合奇函数的性质即可得出答案.【详解】解:∵函数的图像关于直线对称,∴,∴,∵奇函数满足,当时,,∴,故选:D.【点睛】本题主要考查函数的奇偶性与对称性的综合应用,属于基础题.4、A【解析】
作出两异面直线所成的角,然后由余弦定理求解.【详解】在正四棱柱中,则异面直线与所成角为或其补角,在中,,,.故选A.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角,然后通过解三角形求之.5、C【解析】试题分析:选项A中,条件应为;选项B中当时不成立;选项D中,结论应为;C正确.考点:不等式的性质.6、C【解析】
直接利用集合补集的定义求解即可.【详解】因为全集,所以0,2属于全集且不属于集合A,所以集合,故选:C.【点睛】本题主要考查集合补集的定义,属于基础题.7、C【解析】
利用线面、面面之间的位置关系逐一判断即可.【详解】对于A,若,,则平行、相交、异面均有可能,故A不正确;对于B,若,,,则垂直、平行均有可能,故B不正确;对于C,若,,,根据线面垂直的定义可知内的两条相交线线与内的两条相交线平行,故,故C正确;对于D,由C可知,D不正确;故选:C【点睛】本题考查了由线面平行、线面垂直判断线面、线线、面面之间的位置关系,属于基础题.8、A【解析】
数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【点睛】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.9、B【解析】试题分析:因为是第二象限角,且,所以.考点:两角和的正切公式.10、D【解析】
变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【详解】,由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.12、9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.13、【解析】
由垂直关系可得数量积等于零,根据数量积坐标运算构造方程求得结果.【详解】,解得:故答案为:【点睛】本题考查根据向量垂直关系求解参数值的问题,关键是明确两向量垂直,则向量数量积为零.14、【解析】
根据题意得出,再利用单位向量的定义即可求解.【详解】由在轴、轴正方向上的投影分别是、,可得,所以与同向的单位向量为,故答案为:【点睛】本题考查了向量的坐标表示以及单位向量的定义,属于基础题.15、-3【解析】
根据三点共线与斜率的关系即可得出.【详解】kAB=-2-33-(-2)=-1,k∵A(-2,3),B(3,-2),C(4,m)三点共线,∴﹣1=-3-m6,解得m=故答案为-3.【点睛】本题考查了三点共线与斜率的关系,考查了推理能力与计算能力,属于基础题.16、【解析】
将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),【解析】
(1)由,求得,由大边对大角可知均为锐角,利用同角三角函数关系求得,利用两角和差正弦公式求得结果;(2)根据正弦定理得到的关系,代入可求得;利用余弦定理求得.【详解】(1)(2)由正弦定理可得:又,解得:,则由余弦定理可得:【点睛】本题考查解三角形的相关知识,涉及到同角三角函数关系、两角和差正弦公式、大边对大角的关系、正弦定理和余弦定理的应用等知识,属于常考题型.18、(1);(2)见解析【解析】
(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据对称性求得点坐标,由在圆外,所以点不能作为直角三角形的顶点,分类讨论,即可求得的值.【详解】(1)直线的方程可化为,由解得∴定点的坐标为.设圆的方程为,则圆心则依题意有解得∴圆的方程为;(2)由(1)知圆的标准方程为,∴圆心,半径.∵是直径的两个端点,∴圆心是与的中点,∵轴上的点在圆外,∴是锐角,即不是直角顶点.若是的直角顶点,则,得;若是的直角顶点,则,得.综上所述,在轴上存在一点,使为直角三角形,或.【点睛】本题考查圆的方程的求法,直线与圆的位置关系,考查分类讨论思想,属于中档题.19、(I);(II)时,函数取得最大值【解析】试题分析:(1)将f(),f()求出大小后比较即可.(2)根据三角函数二倍角公式将f(x)化简,最终化得一个二次函数,根据二次函数的单调性,由此得到最大值.解:(I)因为所以因为,所以(II)因为令,,所以,因为对称轴,根据二次函数性质知,当时,函数取得最大值.20、(1)从第27项开始(2)【解析】
(1)写出通项公式解不等式即可;(2)由(1)得数列最后一个负项为取得最大值处即可求解【详解】(1).解得.所以从第27
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度保险合同标的及详细保险条款
- 美容香脂霜市场发展预测和趋势分析
- 2024年度智能工厂生产线升级改造合同
- 2024年度彻砖生产技术转让合同
- 擀面杖烹饪用市场发展现状调查及供需格局分析预测报告
- 2024年度充电桩设备出口贸易合同
- 2024年度玻璃幕墙清洁保养合同
- 摄影器具包市场发展现状调查及供需格局分析预测报告
- 2024年度商业地产租赁及装修补偿合同
- 唇色调和剂市场发展现状调查及供需格局分析预测报告
- 一年级笔顺描红字帖田字格打印版
- 潮流玩具行业分析
- 文化翻译理论视域下的电影字幕汉译研究以电影《怦然心动》字幕翻译为例
- 二手盘物业接管专项方案
- 缺血性卒中基层诊疗指南(实践版-2021)
- 院感年度工作总结
- 2023年营口市站前区人民法院聘用制书记员招聘考试试题及答案
- 南京市2023-2024学年九年级上学期期末英语试卷(含答案解析)
- 空乘人员生涯发展展示
- 项目风险评估与缓解措施
- 《美丽的颜色》核心素养课件
评论
0/150
提交评论