2023-2024学年黑龙江省北安市第一中学高一下数学期末学业质量监测试题含解析_第1页
2023-2024学年黑龙江省北安市第一中学高一下数学期末学业质量监测试题含解析_第2页
2023-2024学年黑龙江省北安市第一中学高一下数学期末学业质量监测试题含解析_第3页
2023-2024学年黑龙江省北安市第一中学高一下数学期末学业质量监测试题含解析_第4页
2023-2024学年黑龙江省北安市第一中学高一下数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年黑龙江省北安市第一中学高一下数学期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,若,则此三角形为()三角形.A.等腰 B.直角 C.等腰直角 D.等腰或直角2.将函数y=sinx-πA.y=sin1C.y=sin13.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc24.设向量,,若三点共线,则()A. B. C. D.25.如图,某几何体的三视图如图所示,则此几何体的体积为()A. B. C. D.36.已知函数,其中为整数,若在上有两个不相等的零点,则的最大值为()A. B. C. D.7.如图,E是平行四边形ABCD的边AD的中点,设等差数列的前n项和为,若,则()A.25 B. C. D.558.若,则下列结论不正确的是()A. B. C. D.9.圆与圆恰有三条公切线,则实数的值是()A.4 B.6 C.16 D.3610.已知,函数的最小值是()A.4 B.5 C.8 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.函数y=tan12.从甲、乙、丙、丁四个学生中任选两人到一个单位实习,余下的两人到另一单位实习,则甲、乙两人不在同一单位实习的概率为________.13.已知中,,则面积的最大值为_____14.已知等差数列中,,则_______15.已知向量,的夹角为°,,,则______.16.函数的最小正周期为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.分组频数频率0.4合计(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.18.在平面直角坐标系xOy中,已知圆,三个点,B、C均在圆上,(1)求该圆的圆心的坐标;(2)若,求直线BC的方程;(3)设点满足四边形TABC是平行四边形,求实数t的取值范围.19.在ΔABC中,角A,B,C,的对边分别是a,b,c,a-bsinA+sin(1)若b=6,求sinA(2)若D、E在线段BC上,且BD=DE=EC,AE=2320.在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.21.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由条件结合正弦定理即可得到,由此可得三角形的形状.【详解】由于在中,有,根据正弦定理可得;所以此三角形为直角三角形;、故答案选B【点睛】本题主要考查正弦定理的应用,属于基础题.2、C【解析】

将函数y=sin(x-π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(12x-π3),再向左平移π3个单位得到的解析式为y=sin(12(x+π3)-3、C【解析】

根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.4、A【解析】

利用向量共线的坐标表示可得,解方程即可.【详解】三点共线,,又,,,解得.故选:A【点睛】本题考查了向量共线的坐标表示,需掌握向量共线,坐标满足:,属于基础题.5、A【解析】

首先根据三视图画出几何体的直观图,进一步利用几何体的体积公式求出结果.【详解】解:根据几何体得三视图转换为几何体为:故:V.故选:A.【点睛】本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考察学生的运算能力和转换能力,属于基础题.6、A【解析】

利用一元二次方程根的分布的充要条件得到关于的不等式,再由为整数,可得当取最小时,取最大,从而求得答案.【详解】∵在上有两个不相等的零点,∴∵,∴当取最小时,取最大,∵两个零点的乘积小于1,∴,∵为整数,令时,,满足.故选:A.【点睛】本题考查一元二次函数的零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数的应用.7、D【解析】

根据向量的加法和平面向量定理,得到和的值,从而得到等差数列的公差,根据等差数列求和公式,得到答案.【详解】因为E是平行四边形ABCD的边AD的中点,所以,因为,所以,,所以等差数列的公差,所以.故选:D.【点睛】本题考查向量的加法和平面向量定理,等差数列求和公式,属于简单题.8、C【解析】

A、B利用不等式的基本性质即可判断出;C利用指数函数的单调性即可判断出;D利用基本不等式的性质即可判断出.【详解】A,

∵b<a<0,∴−b>−a>0,∴,正确;B,∵b<a<0,∴,正确;C,

,因此C不正确;D,,正确,综上可知:只有C不正确,故选:C.【点睛】本题主要考查不等式的基本性质,属于基础题.解答过程注意考虑参数的正负,确定不等号的方向是解题的关键.9、C【解析】

两圆外切时,有三条公切线.【详解】圆标准方程为,∵两圆有三条公切线,∴两圆外切,∴,.故选C.【点睛】本题考查圆与圆的位置关系,考查直线与圆的位置关系.两圆的公切线条数:两圆外离时,有4条公切线,两圆外切时,有3条公切线,两圆相交时,有2条公切线,两圆内切时,有1条公切线,两圆内含时,无无公切线.10、A【解析】试题分析:由题意可得,满足运用基本不等式的条件——一正,二定,三相等,所以,故选A考点:利用基本不等式求最值;二、填空题:本大题共6小题,每小题5分,共30分。11、{【解析】

解方程12【详解】由题得12x+故答案为{x|x≠2kπ+【点睛】本题主要考查正切型函数的定义域的求法,意在考查学生对该知识的理解掌握水平,属于基础题.12、.【解析】

求得从甲、乙、丙、丁四个学生中任选两人的总数和甲、乙两人不在同一单位实习的方法数,由古典概型的概率计算公式可得所求值.【详解】解:从甲、乙、丙、丁四个学生中任选两人的方法数为种,甲、乙两人不在同一单位实习的方法数为种,则甲、乙两人不在同一单位实习的概率为.故答案为:.【点睛】本题主要考查古典概型的概率计算公式,考查运算能力,属于基础题.13、【解析】

设,则,根据面积公式得,由余弦定理求得代入化简,由三角形三边关系求得,由二次函数的性质求得取得最大值.【详解】解:设,则,根据面积公式得,由余弦定理可得,可得:,由三角形三边关系有:,且,解得:,故当时,取得最大值,故答案为:.【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.14、【解析】

设等差数列的公差为,用与表示等式,再用与表示代数式可得出答案。【详解】设等差数列的公差为,则,因此,,故答案为:。【点睛】本题考查等差数列中项的计算,解决等差数列有两种方法:基本性质法(与下标相关的性质)以及基本量法(用首项和公差来表示相应的量),一般利用基本量法来进行计算,此外,灵活利用与下标有关的基本性质进行求解,能简化计算,属于中等题。15、1【解析】

把向量,的夹角为60°,且,,代入平面向量的数量积公式,即可得到答案.【详解】由向量,的夹角为°,且,,则.故答案为1【点睛】本题考查了平面向量数量积的坐标表示,直接考查公式本身的直接应用,属于基础题.16、【解析】

将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析【解析】

(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解.(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率.(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比.【详解】(Ⅰ)样本中对B公司的服务质量不满意的频率为,所以样本中对B公司的服务质量不满意的客户有人.(Ⅱ)设“这两名客户都来自于B公司”为事件M.对A公司的服务质量不满意的客户有2人,分别记为,;对B公司的服务质量不满意的客户有3人,分别记为,,.现从这5名客户中随机抽取2名客户,不同的抽取的方法有,,,,,,,,,共10个;其中都来自于B公司的抽取方法有,,共3个,所以.所以这两名客户都来自于B公司的概率为.(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频率比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.【点睛】此题考查概率,关键理解清楚频率分布表和频率分布直方图表示的含有,简单数据可通过列表法求概率或者可以组合数求解,属于较易题目.18、(1)(2)或(3),【解析】

(1)将点代入圆的方程可得的值,继而求出半径和圆心(2)可设直线方程为:,可得圆心到直线的距离,结合弦心距定理可得的值,求出直线方程(3)设,,,,因为平行四边形的对角线互相平分,得,,于是点既在圆上,又在圆上,从而圆与圆上有公共点,即可求解.【详解】(1)将代入圆得,解得,.半径.(2),,且,设直线,即,圆心到直线的距离,由勾股定理得,,,,或,所以直线的方程为或.(3)设,,,,因为平行四边形的对角线互相平分,所以①,因为点在圆上,所以②将①代入②,得,于是点既在圆上,又在圆上,从而圆与圆有公共点,所以,解得.因此,实数的取值范围是,.【点睛】本题考查了直线与圆的关系,涉及了向量知识,弦心距公式,点到直线的距离公式等内容,综合性较强,难度较大.19、(1)32+【解析】

(1)根据正弦定理化简边角关系式,可整理出余弦定理形式,得到cosB=12;再根据正弦定理求得sinC,根据同角三角函数得到cosC;根据两角和差公式求得sinA;(2)设BD=x,在【详解】(1)∵由正弦定理得:a-b整理得:a2+∵0<B<π∴B=由正弦定理bsinB=c∵b>c∴B>C∴∴(2)设BD=x,则:BE=2x,AE=2在ΔABE中,利用余弦定理AE12x2=16+4x∴BE=2,AE=23,又AB=4,即BE∴AD=【点睛】本题考查正弦定理、余弦定理解三角形的问题,涉及到正弦定理化简边角关系式、同角三角函数求解、两角和差公式的运算,考查对于定理和公式的应用,属于常规题型.20、(1);(2),.【解析】试题分析:(1)根据题意和正弦定理求出a的值;

(2)由二倍角的余弦公式变形求出,由的范围和平方关系求出,由余弦定理列出方程求出的值,代入三角形的面积公式求出的面积.试题解析:(1)因为,,由正弦定理,得.(2)因为,且,所以,.由余弦定理,得,解得或(舍),所以.21、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论