2023-2024学年重庆市綦江区南州中学高一数学第二学期期末调研模拟试题含解析_第1页
2023-2024学年重庆市綦江区南州中学高一数学第二学期期末调研模拟试题含解析_第2页
2023-2024学年重庆市綦江区南州中学高一数学第二学期期末调研模拟试题含解析_第3页
2023-2024学年重庆市綦江区南州中学高一数学第二学期期末调研模拟试题含解析_第4页
2023-2024学年重庆市綦江区南州中学高一数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年重庆市綦江区南州中学高一数学第二学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示是正方体的平面展开图,在这个正方体中CN与BM所成角为()A.30° B.45° C.60° D.90°2.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则()A. B.C. D.3.设,则下列不等式中正确的是()A. B.C. D.4.在中,角A,B,C所对的边分别为a,b,c,若,则()A. B. C. D.5.同时抛掷两枚骰子,朝上的点数之和为奇数的概率是()A. B. C. D.6.已知a,b为非零实数,且,则下列不等式一定成立的是()A. B. C. D.7.如图所示,从气球上测得正前方的河流的两岸,的俯角分别为,,此时气球的高度是60m,则河流的宽度等于()A.m B.m C.m D.m8.在中,,则是()A.等腰直角三角形 B.等腰或直角三角形 C.等腰三角形 D.直角三角形9.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心10.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18km,速度为1000km/h,飞行员先看到山顶的俯角为30°,经过1min后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1km)()A.11.4 B.6.6C.6.5 D.5.6二、填空题:本大题共6小题,每小题5分,共30分。11.在直角坐标系中,已知任意角以坐标原点为顶点,以轴的非负半轴为始边,若其终边经过点,且,定义:,称“”为“的正余弦函数”,若,则_________.12.函数的最大值是__________.13.方程,的解集是__________.14.已知函数,则函数的最小值是___.15.已知直线与轴、轴相交于两点,点在圆上移动,则面积的最大值和最小值之差为.16.点与点关于直线对称,则直线的方程为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.18.已知,设.(1)若图象中相邻两条对称轴间的距离不小于,求的取值范围;(2)若的最小正周期为,且当时,的最大值是,求的解析式,并说明如何由的图象变换得到的图象.19.求过点且与圆相切的直线方程.20.已知圆,过点作直线交圆于、两点.(1)当经过圆心时,求直线的方程;(2)当直线的倾斜角为时,求弦的长;(3)求直线被圆截得的弦长时,求以线段为直径的圆的方程.21.已知圆(1)求圆关于直线对称的圆的标准方程;(2)过点的直线被圆截得的弦长为8,求直线的方程;(3)当取何值时,直线与圆相交的弦长最短,并求出最短弦长.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故∠EBM(或其补角)为所求.再由△BEM是等边三角形,可得∠EBM=60°,从而得出结论.【详解】把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故异面直线CN与BM所成的角就是BE和BM所成的角,故∠EBM(或其补角)为所求,再由BEM是等边三角形,可得∠EBM=60,故选:C【点睛】本题主要考查了求异面直线所成的角,体现了转化的数学思想,属于中档题.2、C【解析】

利用甲、乙两名同学6次考试的成绩统计直接求解.【详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,.故选:.【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题.3、B【解析】

取,则,,只有B符合.故选B.考点:基本不等式.4、B【解析】

由题意和余弦定理可得,再由余弦定理可得,可得角的值.【详解】在中,,由余弦定理可得,,,又,.故选:.【点睛】本题考查利用余弦定理解三角形,考查了转化思想,属基础题.5、A【解析】

分别求出基本事件的总数和点数之和为奇数的事件总数,再由古典概型的概率计算公式求解.【详解】同时抛掷两枚骰子,总共有种情况,朝上的点数之和为奇数的情况有种,则所求概率为.故选:A.【点睛】本题考查古典概型概率的求法,属于基础题.6、C【解析】

,时,、、不成立;利用作差比较,即可求出.【详解】解:,时,,,故、、不成立;,,.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.7、A【解析】

在直角三角形中,利用锐角三角函数求出的长,在直角三角形中,利用锐角三角函数求出的长,最后利用进行求解即可.【详解】在直角三角形中,.在直角三角形中,.所以有.故选:A【点睛】本题考查了锐角三角函数的应用,考查了数学运算能力.8、D【解析】

先由可得,然后利用与三角函数的和差公式可推出,从而得到是直角三角形【详解】因为,所以所以因为所以即所以所以因为,所以因为,所以,即是直角三角形故选:D【点睛】要判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:①角化边:把已知条件转化为只含边的关系,通过因式分解、配方等得到边的对应关系,从而判断三角形形状,②边化角:把已知条件转化为内角的三角函数间的关系,通过三角恒等变换,得出内角的关系,从而判断三角形的形状.9、A【解析】

设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【点睛】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.10、B【解析】AB=1000×(km),∴BC=·sin30°=(km).∴航线离山顶h=×sin75°≈11.4(km).∴山高为18-11.4=6.6(km).选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:根据正余弦函数的定义,令,则可以得出,即.可以得出,解得,.那么,,所以故本题正确答案为.考点:三角函数的概念.12、【解析】分析:利用两角和正弦公式简化为y=,从而得到函数的最大值.详解:y=sinx+cosx==.∴函数的最大值是故答案为点睛:本题考查了两角和正弦公式,考查了正弦函数的图象与性质,属于基础题.13、【解析】

用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.14、5【解析】因为,所以,函数,当且仅当,即时等号成立.点睛:本题考查了基本不等式的应用,属于基础题.在用基本不等式时,注意"一正二定三相等"这三个条件,关键是找定值,在本题中,将拆成,凑成定值,再用基本不等式求出最小值.15、15【解析】

解:设作出与已知直线平行且与圆相切的直线,

切点分别为,如图所示

则动点C在圆上移动时,若C与点重合时,

△ABC面积达到最小值;而C与点重合时,△ABC面积达到最大值

∵直线3x+4y−12=0与x轴、y轴相交于A(4,0)、B(0,3)两点

可得∴△ABC面积的最大值和最小值之差为

其中分别为点、点到直线AB的距离

∵是圆(x−5)2+(y−6)2=9的两条平行切线与圆的切点

∴点、点到直线AB的距离之差等于圆的直径,即

因此△ABC面积的最大值和最小值之差为

故答案为:1516、【解析】

根据和关于直线对称可得直线和直线垂直且中点在直线上,从而可求得直线的斜率,利用点斜式可得直线方程.【详解】由,得:且中点坐标为和关于直线对称且在上的方程为:,即:本题正确结果:【点睛】本题考查根据两点关于直线对称求解直线方程的问题,关键是明确两点关于直线对称则连线与对称轴垂直,且中点必在对称轴上,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)【解析】

(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【点睛】本题考查解三角形中的正余弦定理的运用,难度较易.对于给定图形的解三角形问题,一定要注意去结合图形去分析.18、(1);(2);平移变换过程见解析.【解析】

(1)根据平面向量的坐标运算,表示出的解析式,结合辅助角公式化简三角函数式.结合相邻两条对称轴间的距离不小于及周期公式,即可求得的取值范围;(2)根据最小正周期,求得的值.代入解析式,结合正弦函数的图象、性质与的最大值是,即可求得的解析式.再根据三角函数图象平移变换,即可描述变换过程.【详解】∵∴∴(1)由题意可知,∴又,∴(2)∵,∴∴∵,∴∴当即时∴∴将图象上所有点向右平移个单位,得到的图象;再将得到的图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象(或将图象上所有点的横坐标变为原来的倍,纵坐标不变,得到的图象;再将得到的图象上所有点向右平移个单位,得到的图象)【点睛】本题考查了正弦函数图像与性质的综合应用,根据最值求三角函数解析式,三角函数图象平移变换过程,属于中档题.19、直线方程为或【解析】

当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【点睛】本题考查了圆的切线的求法,考查了直线的方程,考查了点到直线的距离公式,属于基础题。20、(1);(2);(3).【解析】

(1)求出圆的圆心,代入直线方程,求出直线的斜率,即可求直线l的方程;(2)当直线l的倾斜角为45°时,求出直线的斜率,然后求出直线的方程,利用点到直线的距离,半径,半弦长的关系求弦AB的长;(3)利用垂径公式,明确是的中点,进而得到以线段为直径的圆的方程.【详解】()圆的方程可化为,圆心为,半径为.当直线过圆心,时,,∴直线的方程为,即.()因为直线的倾斜角为且过,所以直线的方程为,即.圆心到直线的距离,∴弦.()由于,而弦心距,∴,∴是的中点.故以线段为直径的圆圆心是,半径为.故以线段为直径的圆的方程为.21、(1);(2)或;(3)【解析】

(1)设,根据圆心与关于直线对称,列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得,根据斜率分类讨论,求得直线的斜率,即可求解;(3)由直线,得直线过定点,根据时,弦长最短,即可求解.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论