安徽省“庐巢六校联盟”2024届数学高一下期末考试试题含解析_第1页
安徽省“庐巢六校联盟”2024届数学高一下期末考试试题含解析_第2页
安徽省“庐巢六校联盟”2024届数学高一下期末考试试题含解析_第3页
安徽省“庐巢六校联盟”2024届数学高一下期末考试试题含解析_第4页
安徽省“庐巢六校联盟”2024届数学高一下期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省“庐巢六校联盟”2024届数学高一下期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获2.向量,,若,则()A.2 B. C. D.3.过点,且圆心在直线上的圆的方程是()A. B.C. D.4.已知在角终边上,若,则()A. B.-2 C.2 D.5.下列函数中最小值为4的是()A. B.C. D.6.已知集合,,则()A. B.C. D.7.在中,角的对边分别是,,则的形状为A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形8.已知函数,则在上的单调递增区间是()A. B. C. D.9.已知数列的前项和为,若,对任意的正整数均成立,则()A.162 B.54 C.32 D.1610.在中,若,则角的大小为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将边长为1的正方形(及其内部)绕旋转一周形成圆柱,点、分别是圆和圆上的点,长为,长为,且与在平面的同侧,则与所成角的大小为______.12.用数学归纳法证明时,从“到”,左边需增乘的代数式是___________.13.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.14.在△ABC中,内角A、B、C所对的边分别为a、b、c,若,则_____.15.已知一个扇形的周长为4,则扇形面积的最大值为______.16.已知,,若,则实数的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、.18.设向量,,令函数,若函数的部分图象如图所示,且点的坐标为.(1)求点的坐标;(2)求函数的单调增区间及对称轴方程;(3)若把方程的正实根从小到大依次排列为,求的值.19.已知函数.(1)求函数的最小正周期和单调递减区间;(2)求函数在上的最大值和最小值.20.求值:(1)一个扇形的面积为1,周长为4,求圆心角的弧度数;(2)已知,计算.21.的内角的对边分别为,且.(1)求;(2)若,点在边上,,,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【点睛】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.2、C【解析】试题分析:,,得得,故选C.考点:向量的垂直运算,向量的坐标运算.3、C【解析】

直接根据所给信息,利用排除法解题。【详解】本题作为选择题,可采用排除法,根据圆心在直线上,排除B、D,点在圆上,排除A故选C【点睛】本题考查利用排除法选出圆的标准方程,属于基础题。4、C【解析】

由正弦函数的定义求解.【详解】,显然,∴.故选C.【点睛】本题考查正弦函数的定义,属于基础题.解题时注意的符号.5、C【解析】

对于A和D选项不能保证基本不等式中的“正数”要求,对于B选项不能保证基本不等式中的“相等”要求,即可选出答案.【详解】对于A,当时,显然不满足题意,故A错误.对于B,,,.当且仅当,即时,取得最小值.但无解,故B错误.对于D,当时,显然不满足题意,故D错误.对于C,,,.当且仅当,即时,取得最小值,故C正确.故选:C【点睛】本题主要考查基本不等式,熟练掌握基本不等式的步骤为解题的关键,属于中档题.6、A【解析】

先化简集合,根据交集与并集的概念,即可得出结果。【详解】因为,,所以,.故选A【点睛】本题主要考查集合的基本运算,熟记概念即可,属于基础题型.7、A【解析】

先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择.【详解】因为,所以,,因此,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.8、C【解析】

先令,则可求得的单调区间,再根据,对赋值进而限定范围即可【详解】由题,令,则,当时,在上单调递增,则当时,的单调增区间为,故选:C【点睛】本题考查正弦型函数的单调区间,属于基础题9、B【解析】

由,得到数列表示公比为3的等比数列,求得,进而利用,即可求解.【详解】由,可得,所以数列表示公比为3的等比数列,又由,,得,解得,所以,所以故选B.【点睛】本题主要考查了等比数列的定义,以及数列中与之间的关系,其中解答中熟记等比数列的定义和与之间的关系是解答的关键,着重考查了推理与运算能力,属于基础题.10、D【解析】

由平面向量数量积的定义得出、与的等量关系,再由并代入、与的等量关系式求出的值,从而得出的大小.【详解】,,,由正弦定理边角互化思想得,,,同理得,,,则,解得,中至少有两个锐角,且,,所以,,,因此,,故选D.【点睛】本题考查平面向量的数量积的计算,考查利用正弦定理、两角和的正切公式求角的值,解题的关键就是利用三角恒等变换思想将问题转化为正切来进行计算,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

画出几何体示意图,将平移至于直线相交,在三角形中求解角度.【详解】根据题意,过B点作BH//交弧于点H,作图如下:因为BH//,故即为所求异面直线的夹角,在中,,在中,因为,故该三角形为等边三角形,即:,在中,,,且母线BH垂直于底面,故:,又异面直线夹角范围为,故,故答案为:.【点睛】本题考查异面直线的夹角求解,一般解决方法为平移至直线相交,在三角形中求角.12、.【解析】

从到时左边需增乘的代数式是,化简即可得出.【详解】假设时命题成立,则,当时,从到时左边需增乘的代数式是.故答案为:.【点睛】本题考查数学归纳法的应用,考查推理能力与计算能力,属于中档题.13、【解析】

设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.14、【解析】

先利用同角三角函数的商数关系可得,再结合正弦定理及余弦定理化简可得,然后求解即可.【详解】解:因为,则,所以,即,所以,则,即,即即,故答案为:.【点睛】本题考查了同角三角函数的商数关系,重点考查了正弦定理及余弦定理的应用,属中档题.15、1【解析】

表示出扇形的面积,利用二次函数的单调性即可得出.【详解】设扇形的半径为,圆心角为,则弧长,,即,该扇形的面积,当且仅当时取等号.该扇形的面积的最大值为.故答案:.【点睛】本题考查了弧长公式与扇形的面积计算公式、二次函数的单调性,考查了计算能力,属于基础题.16、【解析】

利用共线向量等价条件列等式求出实数的值.【详解】,,且,,因此,,故答案为.【点睛】本题考查利用共线向量来求参数,解题时要充分利用共线向量坐标表示列等式求解,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,则是的重心,连接交于点,则是的中点,∴点在上,∴,故答案为;;∴.点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).18、(1)(2)单调递增区间为;对称轴方程为,;(3)14800【解析】

(1)先求出,令求出点B的坐标;(2)利用复合函数的单调性原理求函数的单调增区间,利用三角函数的图像和性质求对称轴方程;(3)由(2)知对称轴方程为,,所以,,…,,即得解.【详解】解:(1)由已知,得∴令,得,,∴,.当时,,∴得坐标为(2)单调递增区间,得,∴单调递增区间为对称轴,得,∴对称轴方程为,(3)由,得,根据正弦函数图象的对称性,且由(2)知对称轴方程为,∴,,…,∴【点睛】本题主要考查三角恒等变换和三角函数的图像和性质,考查等差数列求和,意在考查学生对这些知识的理解掌握水平,属于中档题.19、(1);(2)5;-2【解析】

(1)根据二倍角公式和辅助角公式化简即可(2)由求出的范围,再根据函数图像求最值即可【详解】(1),,令,即单减区间为;(2)由,当时,的最小值为:-2;当时,的最大值为:5【点睛】本题考查三角函数解析式的化简,函数基本性质的求解(周期、单调性、在给定区间的最值),属于中档题20、(1);(2).【解析】

(1)设出扇形的半径为,弧长为,利用面积、周长的值,得到关于的方程;(2)由已知条件得到,再代入所求的式子进行约分求值.【详解】(1)设扇形的半径为,弧长为,则解得:所以圆心角的弧度数.(2)因为,所以,所以.【点睛】若三个中,只要知道其中一个,则另外两个都可求出,即知一求二.21、(1);(2).【解析】

(1)由正弦定理、三角函数恒等变换化简已知可得:,结合范围,可得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论