版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省乐山四校高一下数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.两数1,25的等差中项为()A.1 B.13 C.5 D.2.已知,则().A. B. C. D.3.若实数满足,则的最小值为()A.4 B.8 C.16 D.324.半圆的直径,为圆心,是半圆上不同于的任意一点,若为半径上的动点,则的最小值是()A.2 B.0 C.-2 D.45.函数的定义域为()A. B. C. D.6.光线自点M(2,3)射到N(1,0)后被x轴反射,则反射光线所在的直线方程为()A. B.C. D.7.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.8.掷一枚均匀的硬币,如果连续抛掷2020次,那么抛掷第2019次时出现正面向上的概率是()A. B. C. D.9.为了得到函数的图象,只需把函数的图象上所有点的()A.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.B.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向左平移.C.横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移.D.横坐标缩短到原来的倍(纵坐标不变),再将所得的图像向右平移.10.如图,网格纸上正方形小格边长为,图中粗线画的是某几何体的三视图,则该几何体的表面积等于()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为所在平面内一点,且,则_____12.假设我国国民生产总值经过10年增长了1倍,且在这10年期间我国国民生产总值每年的年增长率均为常数,则______.(精确到)(参考数据)13.若函数,则__________.14.若直线l1:y=kx+1与直线l2关于点(2,3)对称,则直线l2恒过定点_____,l1与l2的距离的最大值是_____.15.已知是定义在上的奇函数,对任意实数满足,,则________.16.正六棱柱底面边长为10,高为15,则这个正六棱柱的体积是_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求点到平面的距离.18.在平面直角坐标系中,已知向量,.(1)求证:且;(2)设向量,,且,求实数的值.19.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.20.(1)求函数的单调递增区间;(2)求函数,的单调递减区间.21.已知三棱锥的体积为1.在侧棱上取一点,使,然后在上取一点,使,继续在上取一点,使,……按上述步骤,依次得到点,记三棱锥的体积依次构成数列,数列的前项和.(1)求数列和的通项公式;(2)记,为数列的前项和,若不等式对一切恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
直接利用等差中项的公式求解.【详解】由题得两数1,25的等差中项为.故选:B【点睛】本题主要考查等差中项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.2、A【解析】
.所以选A.【点睛】本题考查了二倍角及同角正余弦的差与积的关系,属于基础题.3、B【解析】
由可以得到,利用基本不等式可求最小值.【详解】因为,故,因为,故,故,当且仅当时等号成立,故的最小值为8,故选B.【点睛】应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.4、C【解析】
将转化为,利用向量数量积运算化简,然后利用基本不等式求得表达式的最小值.【详解】画出图像如下图所示,,等号在,即为的中点时成立.故选C.【点睛】本小题主要考查平面向量加法运算,考查平面向量的数量积运算,考查利用基本不等式求最值,属于中档题.5、A【解析】
根据对数函数的定义域直接求解即可.【详解】由题知函数,所以,所以函数的定义域是.故选:A.【点睛】本题考查了对数函数的定义域的求解,属于基础题.6、B【解析】试题分析:点关于轴的对称点,则反射光线即在直线上,由,∴,故选B.考点:直线方程的几种形式.7、D【解析】
求出样本数据的中心,代入选项可得D是正确的.【详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【点睛】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.8、B【解析】
根据概率的性质直接得到答案.【详解】根据概率的性质知:每次正面向上的概率为.故选:.【点睛】本题考查了概率的性质,属于简单题.9、B【解析】
利用三角函数的平移和伸缩变换的规律求出即可.【详解】为了得到函数的图象,先把函数图像的纵坐标不变,横坐标缩短到原来的倍到函数y=3sin2x的图象,再把所得图象所有的点向左平移个单位长度得到y=3sin(2x+)的图象.故选:B.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦型函数性质的应用,三角函数图象的平移变换和伸缩变换的应用,属于基础题.10、C【解析】
由三视图可知该几何体是一个四棱锥,作出图形即可求出表面积。【详解】该几何体为四棱锥,如图..选C.【点睛】本题考查了三视图,考查了四棱锥的表面积,考查了学生的空间想象能力与计算能力,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.12、【解析】
根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,结合题意可得,解可得的值,即可得答案.【详解】解:根据题意,设10年前的国民生产总值为,则10年后的国民生产总值为,则有,即,解可得:,故答案为:.【点睛】本题考查函数的应用,涉及指数、对数的运算,关键是得到关于的方程,属于基础题.13、【解析】
根据分段函数的解析式先求,再求即可.【详解】因为,所以.【点睛】本题主要考查了分段函数求值问题,解题的关键是将自变量代入相应范围的解析式中,属于基础题.14、(4,5)4.【解析】
根据所过定点与所过定点关于对称可得,与的距离的最大值就是两定点之间的距离.【详解】∵直线:经过定点,又两直线关于点对称,则两直线经过的定点也关于点对称∴直线恒过定点,∴与的距离的最大值就是两定点之间的距离,即为.故答案为:,.【点睛】本题考查了过两条直线交点的直线系方程,属于基础题.15、【解析】
由奇函数的性质得出,由题中等式可推出函数是以为周期的周期函数,再利用周期性和奇偶性求出的值.【详解】函数是定义在上的奇函数,则,且对任意实数满足,,所以,函数是以为周期的周期函数,,,因此,,故答案为:.【点睛】本题考查抽象函数求值,利用题中条件推导出函数的周期是解题的关键,在计算时充分利用函数的周期性将自变的值的绝对值变小,考查逻辑推理能力与计算能力,属于中等题.16、【解析】
正六棱柱是底面为正六边形的直棱柱,利用计算可得结果.【详解】因为正六棱柱底面边长为10,所以其面积,所以体积.【点睛】本题考查正六棱柱的概念及其体积的计算,考查基本运算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)作为棱的中点,连结,,通过证明平面可得.(2)根据等体积法:可求得.【详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分别为,的中点,∴,∴.又,∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴.又∵平面平面,且平面平面,平面,∴平面.∴.设点到平面,的距离.在中,,,则.又∵,∴,则.【点睛】本题考查了直线与平面垂直的判定与性质,考查了等体积法求点面距,属于中档题.18、(1)证明见解析(2)【解析】
(1)根据向量的坐标求出向量模的方法以及向量的数量积即可求解.(2)根据向量垂直,可得数量积等于,进而解方程即可求解.【详解】(1)证明:,,所以,因为,所以;(2)因为,所以,由(1)得:所以,解得.【点睛】本题考查了向量坐标求向量的模以及向量数量积的坐标表示,属于基础题.19、(I);(II);(III)【解析】
(1)根据题意,由向量平行的坐标公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,则有,结合向量数量积的坐标可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根据题意,由x的值可得的坐标,由向量的坐标计算公式可得、和的值,结合,计算可得答案.解:(I)∵与共线,∴,(II)∵,∴,∴(III)∵,∵,,∴,又∵,∴.20、(1);(2).【解析】
(1)利用余弦函数的单调性列出不等式直接求的单调递增区间.(2)利用正弦函数的单调递减区间,直接求解,的单调递减区间.【详解】解:(1)由,,可得,,函数的单调递增区间:,.(2)因为,;可得,.时,.函数,的单调递减区间:.【点睛】本题考查三角函数的单调性的求法,考查学生的计算能力,属于基础题.21、(1).;(2).【解析】
(1)由三棱锥的体积公式可得是等比数列,从而可求得其通项公式,利用可求得,但要注意;(2)用错位相减法求得,化简不等式,分离参数,转化为求函数的最值.【详解】(1)由题意,∴,三棱锥的体积就是三棱锥的体积,它们都以为底面,因此它们的体积比等于它们高的比,即到平面的距离之比,又都在直线上,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 统计学课程设计数据
- 白酒品酒师课程设计
- 画室造型课程设计案例
- 红外线报警系统课程设计
- 油库防火防爆课程设计
- 知识产权法课程设计
- 学校课程设计书
- 瑜伽课程设计的内容
- 2024年建筑安全员《C证》考试题库
- 概预算课程设计算首层
- 大件运输专业知识课件
- 国开电大财务管理学习活动第4章 腾讯公司融资案例分析参考答案
- UPS现场巡检维护保养记录表
- 空白教案模板(表格形式-已排版)
- 中药学第十九章活血化瘀药课件
- 99S203消防水泵接合器安装图集
- DB33-T1196-2020《农村生活污水处理设施污水排入标准》
- 实操考评表(模版)
- 桥梁的施工组织设计
- 消火栓试射试验记录
- 2022年高中统编教材历史培训 第20课 社会主义国家的发展与变化 PPT
评论
0/150
提交评论