安徽省马鞍山中加双语学校 2024届高一数学第二学期期末统考试题含解析_第1页
安徽省马鞍山中加双语学校 2024届高一数学第二学期期末统考试题含解析_第2页
安徽省马鞍山中加双语学校 2024届高一数学第二学期期末统考试题含解析_第3页
安徽省马鞍山中加双语学校 2024届高一数学第二学期期末统考试题含解析_第4页
安徽省马鞍山中加双语学校 2024届高一数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省马鞍山中加双语学校2024届高一数学第二学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列条件:①;②;③;其中一定能推出成立的有()A.0个 B.3个 C.2个 D.1个2.已知样本的平均数是10,方差是2,则的值为()A.88 B.96 C.108 D.1103.下面一段程序执行后的结果是()A.6 B.4 C.8 D.104.已知数列为等比数列,且,则()A. B. C. D.5.与圆关于直线对称的圆的方程为()A. B.C. D.6.函数,若方程恰有三个不同的解,记为,则的取值范围是()A. B. C. D.7.若平面α∥平面β,直线平面α,直线n⊂平面β,则直线与直线n的位置关系是()A.平行 B.异面C.相交 D.平行或异面8.一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积是()A.10 B.20 C.30 D.409.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,10.函数f(x)=sin(ωx+π4)(ω>0)的图象在[0,πA.(1,5) B.(1,+∞) C.[二、填空题:本大题共6小题,每小题5分,共30分。11.过P(1,2)的直线把圆分成两个弓形,当其中劣孤最短时直线的方程为_________.12.中国古代数学著作《算法统宗》有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人要走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后达到目的地.”则该人最后一天走的路程为__________里.13.函数的单调递增区间为______.14.在△中,,,,则_________.15.若、是方程的两根,则__________.16.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个内角、、的对边分别是、、,的面积,(Ⅰ)求角;(Ⅱ)若中,边上的高,求的值.18.已知公差为正数的等差数列,,且成等比数列.(1)求;(2)若,求数列的前项的和.19.设两个非零向量,不共线,如果,,.(1)求证:、、共线;(2)试确定实数,使和共线.20.已知圆,直线.圆与轴交于两点,是圆上不同于的一动点,所在直线分别与交于.(1)当时,求以为直径的圆的方程;(2)证明:以为直径的圆截轴所得弦长为定值.21.已知函数的最小正周期为,且其图象的一个对称轴为,将函数图象上所有点的橫坐标缩小到原来的倍,再将图象向左平移个单位长度,得到函数的图象.(1)求的解析式,并写出其单调递增区间;(2)求函数在区间上的零点;(3)对于任意的实数,记函数在区间上的最大值为,最小值为,求函数在区间上的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用特殊值证得①②不一定能推出,利用平方差公式证得③能推出.【详解】对于①,若,而,故①不一定能推出;对于②,若,而,故②不一定能推出;对于③,由于,所以,故,也即.故③一定能推出.故选:D.【点睛】本小题主要考查不等式的性质,考查实数大小比较,属于基础题.2、B【解析】

根据平均数和方差公式列方程组,得出和的值,再由可求得的值.【详解】由于样本的平均数为,则有,得,由于样本的方差为,有,得,即,,因此,,故选B.【点睛】本题考查利用平均数与方差公式求参数,解题的关键在于平均数与方差公式的应用,考查计算能力,属于中等题.3、A【解析】

根据题中的程序语句,直接按照顺序结构的功能即可求出。【详解】由题意可得:,,,所以输出为6,故选A.【点睛】本题主要考查顺序结构的程序框图的理解,理解语句的含义是解题关键。4、A【解析】

根据等比数列性质知:,得到答案.【详解】已知数列为等比数列故答案选A【点睛】本题考查了等比数列的性质,属于简单题.5、A【解析】

设所求圆的圆心坐标为,列出方程组,求得圆心关于的对称点,即可求解所求圆的方程.【详解】由题意,圆的圆心坐标,设所求圆的圆心坐标为,则圆心关于的对称点,满足,解得,即所求圆的圆心坐标为,且半径与圆相等,所以所求圆的方程为,故选A.【点睛】本题主要考查了圆的方程的求解,其中解答中熟记圆的方程,以及准确求解点关于直线的对称点的坐标是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解析】

由方程恰有三个不同的解,作出的图象,确定,的取值范围,得到的对称性,利用数形结合进行求解即可.【详解】设

作出函数的图象如图:由

则当

,,

即函数的一条对称轴为

,要使方程恰有三个不同的解,则

,

此时

,

关于

对称,则

,即

,则

的取值范围是,选D.【点睛】本题主要考查了方程与函数,数学结合是解决本题的关键,数学结合也是数学中比较重要的一种思想方法.7、D【解析】

由面面平行的定义,可得两直线无公共点,可得所求结论.【详解】平面α∥平面β,可得两平面α,β无公共点,即有直线与直线也无公共点,可得它们异面或平行,故选:D.【点睛】本题考查空间线线的位置关系,考查面面平行的定义,属于基础题.8、B【解析】分析:要求圆柱的轴截面的面积,需先知道圆柱的轴截面是什么图形,圆柱的轴截面是矩形,由题意知该矩形的长、宽分别为,根据矩形面积公式可得结果.详解:因为圆柱的轴截面是矩形,由题意知该矩形的长是母线长,宽为底面圆的直径,所以轴截面的面积为,故选B.点睛:本题主要考查圆柱的性质以及圆柱轴截面的面积,属于简单题.9、A【解析】

分别判断两个函数的定义域和对应法则是否相同即可.【详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【点睛】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.10、C【解析】

结合正弦函数的基本性质,抓住只有一条对称轴,建立不等式,计算范围,即可.【详解】当x=π4时,wx+π4=π4w+π4,当【点睛】考查了正弦函数的基本性质,关键抓住只有一条对称轴,建立不等式,计算范围,即可.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先根据圆的几何性质,可分析出当点是弦的中点时,劣弧最短,利用圆心和弦的中点连线与直线垂直,可求得直线方程.【详解】当劣弧最短时,即劣弧所对的弦最短,当点是弦的中点时,此时弦最短,也即劣弧最短,圆:,圆心,,,直线方程是,即,故填:.【点睛】本题考查了直线与圆的位置关系,以及圆的几何性质,属于基础题型.12、3【解析】分析:每天走的路形成等比数列{an},q=,S3=1.利用求和公式即可得出.详解:每天走的路形成等比数列{an},q=,S3=1.∴S3=1=,解得a1=2.∴该人最后一天走的路程=a1q5==3.故答案为:3.点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于基础题.13、【解析】

令,解得的范围即为所求的单调区间.【详解】令,,解得:,的单调递增区间为故答案为:【点睛】本题考查正弦型函数单调区间的求解问题,关键是能够采用整体对应的方式,结合正弦函数的单调区间来进行求解.14、【解析】

利用余弦定理求得的值,进而求得的大小.【详解】由余弦定理得,由于,故.【点睛】本小题主要考查余弦定理解三角形,考查特殊角的三角函数值,属于基础题.15、【解析】

由题意利用韦达定理求得、的值,再利用两角差的正切公式,求得要求式子的值.【详解】解:、是方程的两根,,,,或,,则,故答案为:.【点睛】本题主要考查韦达定理,两角差的正切公式,属于基础题.16、【解析】

由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【点睛】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由面积公式推出,代入所给等式可得,求出角C的余弦值从而求得角C;(Ⅱ)首先由求出边c,再由面积公式代入相应值求出边b,利用余弦定理即可求出边a.【详解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,将代入中得,解得.【点睛】本题考查余弦定理解三角形,三角形面积公式,属于基础题.18、(1);(2)【解析】

(1)直接利用等差数列的性质的应用求出数列的公差,进一步求出数列的通项公式.(2)利用(1)的通项公式,进一步利用错位相减法求出数列的和.【详解】(1)设公差为,由,,成等比数列,得,结合,解得,或(舍去),∴.(2)∴,∴,①,②,由①②可得:∴.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,错位相减法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.19、(1)证明见解析(2)【解析】

(1)要证、、共线,只要证明存在实数,使得成立即可.

(2)利用向量共线的充要条件和两个非零向量与不共线即可求出.【详解】(1)证明:由.又,则.所以.所以、、共线.(2)和共线,则存在实数,使得成立.向量,不共线,所以,解得:所以当时,使和共线.【点睛】本题考查利用向量共线的充要条件证明点共线和求参数的值.20、(1);(2)证明见解析.【解析】

(1)讨论点的位置,根据直线的方程,直线的方程分别与直线方程联立,得出的坐标,进而得出圆心坐标以及半径,即可得出该圆的方程;(2)讨论点的位置,根据直角三角形的边角关系得出的坐标,进而得出圆心坐标以及半径,再由圆的弦长公式化简即可证明.【详解】(1)由圆的方程可知,①当点在第一象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为②当点在第四象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为综上,以为直径的圆的方程为(2)①当点在圆上半圆运动时,取直线交轴于点,如下图所示设,则则以为直径的圆的圆心坐标为,半径所以以为直径的圆截轴所得弦长为②当点在圆下半圆运动时,取直线交轴于点,如下图所示设,则则以为直径的圆的圆心坐标为,半径所以以为直径的圆截轴所得弦长为综上,以为直径的圆截轴所得弦长为定值.【点睛】本题主要考查了求圆的方程以及圆的弦长公式的应用,属于中档题.21、(1),单调递增区间为;(2)、、;(3).【解析】

(1)由函数的最小正周期求出的值,由图象的对称轴方程得出的值,从而可求出函数的解析式;(2)先利用图象变换的规律得出函数的解析式,然后在区间上解方程可得出函数的零点;(3)对分三种情况、、分类讨论,分析函数在区间上的单调性,得出和,可得出关于的表达式,再利用函数的单调性得出函数的最大值.【详解】(1)由题意可知,,.令,即,即函数的图象的对称轴方程为.由于函数图象的一条对称轴方程为,,,,,则,因此,.函数的单调递增区间为;(2)将函数的图象上所有点的橫坐标缩小到原来的倍,得到函数.再将所得函数的图象向左平移个单位长度,得到函数.令

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论