安徽宿州埇桥区重点中学中考数学模拟试题及答案解析_第1页
安徽宿州埇桥区重点中学中考数学模拟试题及答案解析_第2页
安徽宿州埇桥区重点中学中考数学模拟试题及答案解析_第3页
安徽宿州埇桥区重点中学中考数学模拟试题及答案解析_第4页
安徽宿州埇桥区重点中学中考数学模拟试题及答案解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽宿州埇桥区重点中学中考数学模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一元二次方程的根是()A. B.C. D.2.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)33.544.5人数1132A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.53.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是()A. B. C. D.4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°5.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35° B.45° C.55° D.25°6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是()A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同7.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩人数这些运动员跳高成绩的中位数是()A. B. C. D.8.在,,则的值为()A. B. C. D.9.若实数a,b满足|a|>|b|,则与实数a,b对应的点在数轴上的位置可以是()A. B. C. D.10.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④二、填空题(共7小题,每小题3分,满分21分)11.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为x,则x=__________.12.如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.13.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).14.正十二边形每个内角的度数为.15.如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点O、A、B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm.16.如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.17.计算:2cos60°-+(5-π)°=____________.三、解答题(共7小题,满分69分)18.(10分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.19.(5分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出时,的取值范围;(3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由.20.(8分)如图,在△ABC中,∠A=45°,以AB为直径的⊙O经过AC的中点D,E为⊙O上的一点,连接DE,BE,DE与AB交于点F.求证:BC为⊙O的切线;若F为OA的中点,⊙O的半径为2,求BE的长.21.(10分)已知:如图,在△OAB中,OA=OB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD.(1)试判断AB与⊙O的位置关系,并加以证明;(2)若tanE=,⊙O的半径为3,求OA的长.22.(10分)(1)计算:﹣14+sin61°+()﹣2﹣(π﹣)1.(2)解不等式组,并把它的解集在数轴上表示出来.23.(12分)如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).24.(14分)某商城销售A,B两种自行车型自行车售价为2

100元辆,B型自行车售价为1

750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80

000元购进A型自行车的数量与用64

000元购进B型自行车的数量相等.求每辆A,B两种自行车的进价分别是多少?现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13

000元,求获利最大的方案以及最大利润.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.考点:一元二次方程的解法——因式分解法——提公因式法.2、A【解析】

根据众数和中位数的概念求解.【详解】这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选A.【点睛】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.3、B【解析】解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.4、B【解析】

由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.【点睛】本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.5、A【解析】

根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【详解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A.【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6、B【解析】

直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.7、C【解析】

根据中位数的定义解答即可.【详解】解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.

所以这些运动员跳高成绩的中位数是1.1.

故选:C.【点睛】本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8、A【解析】

本题可以利用锐角三角函数的定义求解即可.【详解】解:tanA=,

∵AC=2BC,

∴tanA=.

故选:A.【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键.9、D【解析】

根据绝对值的意义即可解答.【详解】由|a|>|b|,得a与原点的距离比b与原点的距离远,只有选项D符合,故选D.【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.10、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.二、填空题(共7小题,每小题3分,满分21分)11、20%.【解析】试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.试题解析:依题意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考点:一元二次方程的应用.12、.【解析】

如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得AH=.∴OB=3+∴S△POB=OB•PH=.13、AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.14、【解析】

首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【详解】试题分析:正十二边形的每个外角的度数是:=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为150°.15、【解析】

设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=cm,根据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB=cm,∴扇形OAB的弧AB的长=π,∴2πr=π,∴r=(cm).故答案为.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.16、【解析】∵点A是反比例函数的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴点B所在图象的函数表达式为,故答案为:.17、1【解析】解:原式==1-2+1=1.故答案为1.三、解答题(共7小题,满分69分)18、(1)答案见解析(2)155°(3)答案见解析【解析】

(1)根据角的定义即可解决;(2)根据∠BOD=∠DOC+∠BOC,首先利用角平分线的定义和邻补角的定义求得∠DOC和∠BOC即可;(3)根据∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分别求得∠COE与∠BOE的度数即可说明.【详解】(1)图中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因为∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【点睛】本题考查了角的度数的计算,正确理解角平分线的定义,以及邻补角的定义是解题的关键.19、(1);;(2)或;(3)存在,或或或.【解析】

(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;

(2)利用图象直接得出结论;

(3)分、、三种情况讨论,即可得出结论.【详解】(1)一次函数与反比例函数,相交于点,,∴把代入得:,∴,∴反比例函数解析式为,把代入得:,∴,∴点C的坐标为,把,代入得:,解得:,∴一次函数解析式为;(2)根据函数图像可知:当或时,一次函数的图象在反比例函数图象的上方,∴当或时,;(3)存在或或或时,为等腰三角形,理由如下:过作轴,交轴于,∵直线与轴交于点,∴令得,,∴点A的坐标为,∵点B的坐标为,∴点D的坐标为,∴,①当时,则,,∴点P的坐标为:、;②当时,是等腰三角形,,平分,,∵点D的坐标为,∴点P的坐标为,即;③当时,如图:设,则,在中,,,,由勾股定理得:,,解得:,,∴点P的坐标为,即,综上所述,当或或或时,为等腰三角形.【点睛】本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论.20、(1)证明见解析;(2)【解析】

(1)连接BD,由圆周角性质定理和等腰三角形的性质以及已知条件证明∠ABC=90°即可;(2)连接OD,根据已知条件求得AD、DF的长,再证明△AFD∽△EFB,然后根据相似三角形的对应边成比例即可求得.【详解】(1)连接BD,∵AB为⊙O的直径,∴BD⊥AC,∵D是AC的中点,∴BC=AB,∴∠C=∠A=45°,∴∠ABC=90°,∴BC是⊙O的切线;(2)连接OD,由(1)可得∠AOD=90°,∵⊙O的半径为2,F为OA的中点,∴OF=1,BF=3,,∴,∵,∴∠E=∠A,∵∠AFD=∠EFB,∴△AFD∽△EFB,∴,即,∴.【点睛】本题考查了切线的判定与性质、相似三角形的判定与性质以及勾股定理的运用;证明某一线段是圆的切线时,一般情况下是连接切点与圆心,通过证明该半径垂直于这一线段来判定切线.21、(1)AB与⊙O的位置关系是相切,证明见解析;(2)OA=1.【解析】

(1)先判断AB与⊙O的位置关系,然后根据等腰三角形的性质即可解答本题;(2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长.【详解】解:(1)AB与⊙O的位置关系是相切,证明:如图,连接OC.∵OA=OB,C为AB的中点,∴OC⊥AB.∴AB是⊙O的切线;(2)∵ED是直径,∴∠ECD=90°.∴∠E+∠ODC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC,∴∠BCD=∠E.又∵∠CBD=∠EBC,∴△BCD∽△BEC.∴.∴BC2=BD•BE.∵,∴.∴.设BD=x,则BC=2x.又BC2=BD•BE,∴(2x)2=x(x+6).解得x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=2+3=1.【点睛】本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22、(1)5;(2)﹣2≤x<﹣.【解析】

(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可.【详解】(1)原式=5;(2)解不等式①得,x≥﹣2,解不等式②得,所以不等式组的解集是用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论