贵州省铜仁市碧江区铜仁一中2024届高一下数学期末联考试题含解析_第1页
贵州省铜仁市碧江区铜仁一中2024届高一下数学期末联考试题含解析_第2页
贵州省铜仁市碧江区铜仁一中2024届高一下数学期末联考试题含解析_第3页
贵州省铜仁市碧江区铜仁一中2024届高一下数学期末联考试题含解析_第4页
贵州省铜仁市碧江区铜仁一中2024届高一下数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省铜仁市碧江区铜仁一中2024届高一下数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知平面向量,,若,则实数()A.-2 B.-1 C. D.22.已知直线,,若,则()A.2 B. C. D.13.已知数列中,,则()A. B. C. D.4.已知某几何体的三视图是如图所示的三个直角三角形,则该几何体的外接球的表面积为()A.17π B.34π C.51π D.68π5.化简:()A. B. C. D.6.某种产品的广告费用支出与销售额之间具有线性相关关系,根据下表数据(单位:百万元),由最小二乘法求得回归直线方程为.现发现表中有个数据看不清,请你推断该数据值为()345582834★5672A.65 B.60 C.55 D.507.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元8.若实数满足,则的最大值是()A. B. C. D.9.在△中,角,,所对的边分别为,,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.一几何体的三视图如图所示,则该几何体的表面积为()A.16 B.20 C.24 D.28二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列的公差为2,若成等比数列,则________.12.圆与圆的公共弦长为________.13.已知圆的圆心在直线,与y轴相切,且被直线截得的弦长为,则圆C的标准方程为________.14.数列的前项和,则__________.15.已知点在直线上,则的最小值为__________.16.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求的值;(2)求的值.18.在中,分别是所对的边,若的面积是,,.求的长.19.已知向量,且(1)当时,求及的值;(2)若函数的最小值是,求实数的值.20.已知圆的半径是2,圆心在直线上,且圆与直线相切.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.21.在中,分别为内角的对边,且(1)求的大小:(2)若,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由题意,则,再由数量积的坐标表示公式即可得到关于的方程,解出它的值【详解】由,,则,即解得:故选:A【点睛】本题考查数量积判断两个平面向量的垂直关系,向量的数量积坐标表示,属于基础题.2、D【解析】

当为,为,若,则,由此求解即可【详解】由题,因为,所以,即,故选:D【点睛】本题考查已知直线垂直求参数问题,属于基础题3、B【解析】

由数列的递推关系,可得数列的周期性,再求解即可.【详解】解:因为,①则,②①+②有:,即,则,即数列的周期为6,又,得,,则,故选:D.【点睛】本题考查了数列的递推关系,重点考查了数列周期性的应用,属基础题.4、B【解析】

由三视图还原出原几何体,得几何体的结构(特别是垂直关系),从而确定其外接球球心位置,得球半径.【详解】由三视图知原几何体是三棱锥,如图,平面,平面.由这两个线面垂直,得,因此的中点到四顶点的距离相等,即为外接球球心.由三视图得,,∴.故选:B.【点睛】本题考查三棱锥外接球表面积,考查三视图.解题关键是由三视图还原出原几何体,确定几何体的结构,找到外接球球心.5、A【解析】

.故选A.【点睛】考查向量数乘和加法的几何意义,向量加法的运算.6、B【解析】

求出样本中心点的坐标,代入线性回归方程求解.【详解】设表中看不清的数据为,则,,代入,得,解得.故选:.【点睛】本题考查线性回归方程,明确线性回归方程恒过样本点的中心是关键,是基础题.7、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.8、B【解析】

根据,将等式转化为不等式,求的最大值.【详解】,,,解得,,的最大值是.故选B.【点睛】本题考查了基本不等式求最值,属于基础题型.9、C【解析】

由正弦定理分别检验问题的充分性和必要性,可得答案.【详解】解:充分性:在△中,由,可得,所以,故充分性成立;必要性:在△中,由及正弦定理,可得,可得,,故,必要性成立;故可得:在△中,角,,所对的边分别为,,,则“”是“”的充分必要条件,故选C.【点睛】本题主要考查充分条件、必要条件的判断,相对不难,注意正弦定理的灵活运用.10、B【解析】

根据三视图可还原几何体,根据长度关系依次计算出各个侧面和上下底面的面积,加和得到表面积.【详解】有三视图可得几何体的直观图如下图所示:其中:,,,则:,,,,几何体表面积:本题正确选项:【点睛】本题考查几何体表面积的求解问题,关键是能够根据三视图准确还原几何体,从而根据长度关系可依次计算出各个面的面积.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..12、【解析】

先求出公共弦方程为,再求出弦心距后即可求解.【详解】两圆方程相减可得公共弦直线方程为,圆的圆心为,半径为,圆心到的距离为,公共弦长为.故答案为:.【点睛】本题考查了圆的一般方程以及直线与圆位置关系的应用,属于基础题.13、或【解析】

由圆心在直线x﹣3y=0上,设出圆心坐标,再根据圆与y轴相切,得到圆心到y轴的距离即圆心横坐标的绝对值等于圆的半径,表示出半径r,距离d,由圆的半径r及表示出的d利用勾股定理列出关于t的方程,求出方程的解得到t的值,从而得到圆心坐标和半径,根据圆心和半径写出圆的方程即可.【详解】设圆心为(3t,t),半径为r=|3t|,则圆心到直线y=x的距离d|t|,而()2=r2﹣d2,9t2﹣2t2=7,t=±1,∴圆心是(3,1)或(-3,-1)故答案为或.【点睛】本题综合考查了垂径定理,勾股定理及点到直线的距离公式.根据题意设出圆心坐标,找出圆的半径是解本题的关键.14、【解析】

根据数列前项和的定义即可得出.【详解】解:因为所以.故答案为:.【点睛】考查数列的定义,以及数列前项和的定义,属于基础题.15、5【解析】

由题得表示点到点的距离,再利用点到直线的距离求解.【详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【点睛】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、③④【解析】

①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

试题分析:(1)利用正切的两角和公式求的值;(2)利用第一问的结果求第二问,但需要先将式子化简,最后变形成关于的式子,需要运用三角函数的倍角公式将化成单角的三角函数,然后分子分母都除以,然后代入的值即可.试题解析:(1)由(2)考点:1.正切的两角和公式;2.正余弦的倍角公式.18、8【解析】

利用同角三角函数的基本关系式求得,利用三角形的面积公式列方程求得,结合求得,根据余弦定理求得的长.【详解】由()得.因为的面积是,则,所以由解得.由余弦定理得,即的长是.【点睛】本小题主要考查同角三角函数的基本关系式,考查三角形的面积公式,考查余弦定理解三角形.19、(1),(2).【解析】

(1)以向量为载体求解向量数量积、模长,我们只需要把向量坐标表示出来,最后用公式就能轻松完成;(2)由(1)可以把表达式求出,最终化成二次复合型函数模式,考虑轴与区间的位置关系,我们就能对函数进行进一步的研究.【详解】(1)因为,所以又因为,所以(2),当时,.当时,不满足.当时,,,不满足.综上,实数的值为.【点睛】在研究三角函数相关的性质(值域、对称中心、对称轴、单调性……)我们都是将其化为(或者余弦、正切相对应)的形式,利用整体思想,我们能比较方便的去研究他们相关性质.第二问中我们其实就是求最小值问题,当然掺杂了二次函数的“轴变区间定”的考点.,综合性较强.20、(1)或;(2)或.【解析】

(1)利用圆心在直线上设圆心坐标,利用相切列方程即可得解;(2)利用最大值为7确定圆,设点的坐标,找到到圆上点的最大距离列方程得解.【详解】解:(1)设圆心的坐标为,因为圆与直线相切,所以,即,解得或,故圆的方程为:,或;(2)由最大值等于可知,若圆的方程为,则的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论